Transcriptome Analysis Identifies Novel Prognostic Genes in Osteosarcoma

比例危险模型 骨肉瘤 转录组 肿瘤科 基因 生存分析 预测模型 医学 鉴定(生物学) 内科学 候选基因 计算生物学 生物信息学 总体生存率 生物 基因表达 病理 遗传学 植物
作者
Junfeng Chen,Xiaojun Guo,Guangjun Zeng,Jianhua Liu,Bin Zhao
出处
期刊:Computational and Mathematical Methods in Medicine [Hindawi Publishing Corporation]
卷期号:2020: 1-8 被引量:6
标识
DOI:10.1155/2020/8081973
摘要

Osteosarcoma (OS), a malignant primary bone tumor often seen in young adults, is highly aggressive. The improvements in high-throughput technologies have accelerated the identification of various prognostic biomarkers for cancer survival prediction. However, only few studies focus on the prediction of prognosis in OS patients using gene expression data due to small sample size and the lack of public datasets. In the present study, the RNA-seq data of 82 OS samples, along with their clinical information, were collected from the TARGET database. To identify the prognostic genes for the OS survival prediction, we selected the top 50 genes of contribution as the initial candidate genes of the prognostic risk model, which were ranked by random forest model, and found that the prognostic model with five predictors including CD180, MYC, PROSER2, DNAI1, and FATE1 was the optimal multivariable Cox regression model. Moreover, based on a multivariable Cox regression model, we also developed a scoring method and stratified the OS patients into groups of different risks. The stratification for OS patients in the validation set further demonstrated that our model has a robust performance. In addition, we also investigated the biological function of differentially expressed genes between two risk groups and found that those genes were mainly involved with biological pathways and processes regarding immunity. In summary, the identification of novel prognostic biomarkers in OS would greatly assist the prediction of OS survival and development of molecularly targeted therapies, which in turn benefit patients’ survival.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
2秒前
3秒前
打打应助文静的信封采纳,获得10
4秒前
冷眼观潮完成签到,获得积分10
4秒前
chemhub完成签到,获得积分10
6秒前
7秒前
7秒前
faiting完成签到,获得积分10
7秒前
bkagyin应助xb采纳,获得10
8秒前
yilin发布了新的文献求助10
8秒前
盏茶轻抿完成签到,获得积分10
10秒前
乔乔兔发布了新的文献求助10
10秒前
11秒前
斯文的小旋风应助Katherine采纳,获得20
12秒前
12秒前
12秒前
13秒前
一往而深发布了新的文献求助10
17秒前
18秒前
酷波er应助乔乔兔采纳,获得10
19秒前
天御雪完成签到,获得积分10
19秒前
20秒前
橘橘橘子皮完成签到 ,获得积分10
21秒前
orixero应助lnd采纳,获得10
21秒前
22秒前
CM发布了新的文献求助30
22秒前
领导范儿应助lili采纳,获得30
23秒前
24秒前
liu完成签到,获得积分10
24秒前
烟花应助LEETHEO采纳,获得10
24秒前
快准对完成签到 ,获得积分10
24秒前
Alex完成签到,获得积分10
24秒前
25秒前
乔乔兔完成签到,获得积分10
25秒前
25秒前
28秒前
28秒前
hiiamwu完成签到 ,获得积分10
28秒前
田小姐发布了新的文献求助10
29秒前
wind完成签到,获得积分10
29秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841815
求助须知:如何正确求助?哪些是违规求助? 3383873
关于积分的说明 10531596
捐赠科研通 3103984
什么是DOI,文献DOI怎么找? 1709463
邀请新用户注册赠送积分活动 823263
科研通“疑难数据库(出版商)”最低求助积分说明 773868