Understanding the Structure–Performance Relationship of Lithium-Rich Cathode Materials from an Oxygen-Vacancy Perspective

材料科学 阴极 电解质 电化学 化学工程 锂(药物) 纳米结构 氧气 纳米技术 离子 氧化物 电极 化学物理 物理化学 冶金 内分泌学 有机化学 化学 工程类 物理 医学 量子力学
作者
Shao‐Lun Cui,Xu Zhang,WU XUE-WEN,Sheng Liu,Zhen Zhou,Guoran Li,Xueping Gao
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:12 (42): 47655-47666 被引量:71
标识
DOI:10.1021/acsami.0c14979
摘要

Li-rich layered oxide cathode materials are regarded as an attractive candidate of next-generation Li-ion batteries (LIBs) to realize an energy density of >300 Wh kg-1. However, challenges such as capacity fade, cycle life, oxygen release, and structural transformation still restrain its practical application. Micro/nanotechnology is one of the effective strategies to enhance its structural stability and electrochemical performance. An in-depth understanding of the relationship between micro/nanostructures and the electrochemical performance of Li-rich layered oxides is undoubtedly important for developing high-performance cathode materials. Herein, Li1.2Ni0.13Co0.13Mn0.54O2 with different micro/nanostructures including irregular particles, microspheres, microrods, and orthogonal particles are synthesized. Starting from the amount of surface oxygen vacancies in the different structures, the influence of oxygen vacancies on every step during the charge-discharge processes is analyzed by experimental characterizations and theoretical calculations. It is indicated that intrinsic oxygen vacancies can enhance the electrical conductivity and decrease the energy barrier for ion migration, which exerts a significant influence on promoting the kinetics and capacity. Among the different micro/nanostructures, microrods with abundant oxygen vacancies can not only promote lithium ion transport but also stabilize a cathode electrolyte interface (CEI) film by adjusting the distribution of surface elements with lower nickel content. The microrods deliver an initial discharge capacity of up to 306.1 mAh g-1 at 0.1C rate and a superior cycle performance with a capacity retention of 91.0% after 200 cycles at 0.2C rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
YSH发布了新的文献求助30
刚刚
科研小白发布了新的文献求助10
2秒前
科研通AI6应助美满的萝采纳,获得10
3秒前
5秒前
5秒前
无心完成签到,获得积分10
6秒前
pumpkin发布了新的文献求助10
6秒前
13333发布了新的文献求助10
6秒前
7秒前
麻花发布了新的文献求助10
10秒前
11秒前
12秒前
Zafar发布了新的文献求助10
12秒前
天天快乐应助陈末采纳,获得10
12秒前
13秒前
宋烁完成签到 ,获得积分10
15秒前
无极微光应助麻花采纳,获得20
17秒前
17秒前
21秒前
amberzyc应助耍酷的如南采纳,获得10
21秒前
pan完成签到 ,获得积分10
21秒前
英姑应助欢呼的音响采纳,获得10
22秒前
IKUN完成签到,获得积分10
23秒前
23秒前
xiaojin完成签到,获得积分10
24秒前
11完成签到,获得积分10
25秒前
25秒前
klzhuo发布了新的文献求助10
26秒前
隐形曼青应助13333采纳,获得10
26秒前
28秒前
刘威琦发布了新的文献求助10
29秒前
麻花完成签到,获得积分10
30秒前
wykang完成签到,获得积分10
32秒前
爆米花应助YOLO采纳,获得10
33秒前
隐形曼青应助阴香萍采纳,获得10
36秒前
潘啊潘完成签到 ,获得积分10
36秒前
Gao完成签到,获得积分10
36秒前
初闻完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284517
求助须知:如何正确求助?哪些是违规求助? 4437901
关于积分的说明 13815526
捐赠科研通 4318950
什么是DOI,文献DOI怎么找? 2370800
邀请新用户注册赠送积分活动 1366092
关于科研通互助平台的介绍 1329624