Local Differential Privacy-Based Federated Learning for Internet of Things

计算机科学 差别隐私 众包 云计算 互联网 强化学习 信息敏感性 计算机网络 分布式计算 计算机安全 人工智能 万维网 数据挖掘 操作系统
作者
Yang Zhao,Jun Zhao,Mengmeng Yang,Teng Wang,Ning Wang,Lingjuan Lyu,Dusit Niyato,Kwok‐Yan Lam
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:8 (11): 8836-8853 被引量:286
标识
DOI:10.1109/jiot.2020.3037194
摘要

The Internet of Vehicles (IoV) is a promising branch of the Internet of Things. IoV simulates a large variety of crowdsourcing applications, such as Waze, Uber, and Amazon Mechanical Turk, etc. Users of these applications report the real-time traffic information to the cloud server which trains a machine learning model based on traffic information reported by users for intelligent traffic management. However, crowdsourcing application owners can easily infer users' location information, traffic information, motor vehicle information, environmental information, etc., which raises severe sensitive personal information privacy concerns of the users. In addition, as the number of vehicles increases, the frequent communication between vehicles and the cloud server incurs unexpected amount of communication cost. To avoid the privacy threat and reduce the communication cost, in this article, we propose to integrate federated learning and local differential privacy (LDP) to facilitate the crowdsourcing applications to achieve the machine learning model. Specifically, we propose four LDP mechanisms to perturb gradients generated by vehicles. The proposed Three-Outputs mechanism introduces three different output possibilities to deliver a high accuracy when the privacy budget is small. The output possibilities of Three-Outputs can be encoded with two bits to reduce the communication cost. Besides, to maximize the performance when the privacy budget is large, an optimal piecewise mechanism (PM-OPT) is proposed. We further propose a suboptimal mechanism (PM-SUB) with a simple formula and comparable utility to PM-OPT. Then, we build a novel hybrid mechanism by combining Three-Outputs and PM-SUB. Finally, an LDP-FedSGD algorithm is proposed to coordinate the cloud server and vehicles to train the model collaboratively. Extensive experimental results on real-world data sets validate that our proposed algorithms are capable of protecting privacy while guaranteeing utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助爱笑的觅双采纳,获得10
刚刚
lzx发布了新的文献求助10
2秒前
2秒前
万金油完成签到 ,获得积分10
2秒前
天天都在干饭完成签到,获得积分10
4秒前
落雁沙发布了新的文献求助10
4秒前
5秒前
新昵称发布了新的文献求助10
5秒前
阿巴阿巴发布了新的文献求助10
5秒前
孤独的鞋垫完成签到,获得积分20
6秒前
7秒前
哈哈哈完成签到,获得积分10
8秒前
Jiaxin_Wu发布了新的文献求助10
10秒前
霸气安蕾发布了新的文献求助10
11秒前
12秒前
lzx完成签到,获得积分10
14秒前
CNNC完成签到,获得积分10
15秒前
liu发布了新的文献求助10
15秒前
卡卡西应助sqly采纳,获得40
16秒前
16秒前
16秒前
迷人立轩完成签到,获得积分20
16秒前
鸭鸭完成签到,获得积分10
17秒前
善良的路灯完成签到,获得积分10
18秒前
18秒前
顾矜应助zczczc采纳,获得10
18秒前
18秒前
Ashao完成签到,获得积分10
19秒前
19秒前
liuhulang完成签到,获得积分10
20秒前
123完成签到,获得积分10
21秒前
认真谷雪完成签到,获得积分10
21秒前
在水一方应助权雨灵采纳,获得10
22秒前
liuhulang发布了新的文献求助10
23秒前
勤奋的鲂关注了科研通微信公众号
23秒前
鸭鸭发布了新的文献求助10
23秒前
wanci应助人不犯二枉少年采纳,获得10
24秒前
上官若男应助负责念梦采纳,获得10
25秒前
25秒前
可爱的函函应助迪迦采纳,获得10
26秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806767
求助须知:如何正确求助?哪些是违规求助? 3351517
关于积分的说明 10354367
捐赠科研通 3067322
什么是DOI,文献DOI怎么找? 1684457
邀请新用户注册赠送积分活动 809699
科研通“疑难数据库(出版商)”最低求助积分说明 765606