Prediction of Core Signaling Pathway by Using Diffusion- and Perfusion-based MRI Radiomics and Next-generation Sequencing in Isocitrate Dehydrogenase Wild-type Glioblastoma

放射基因组学 异柠檬酸脱氢酶 医学 接收机工作特性 IDH1 胶质瘤 胶质母细胞瘤 无线电技术 癌症研究 核医学 肿瘤科 放射科 磁共振成像 内科学 突变 遗传学 生物 基因 生物化学
作者
Ji Eun Park,Ho Sung Kim,Seo Young Park,Soo Jung Nam,Sung‐Min Chun,Youngheun Jo,Jeong Hoon Kim
出处
期刊:Radiology [Radiological Society of North America]
卷期号:294 (2): 388-397 被引量:56
标识
DOI:10.1148/radiol.2019190913
摘要

Background Next-generation sequencing (NGS) enables highly sensitive cancer genomics analysis, but its clinical implications for therapeutic options from imaging-based prediction have been limited. Purpose To predict core signaling pathways in isocitrate dehydrogenase (IDH) wild-type glioblastoma by using diffusion and perfusion MRI radiomics and NGS. Materials and Methods The radiogenomics model was developed by using retrospective patients with glioma who underwent NGS and anatomic, diffusion-, and perfusion-weighted imaging between March 2017 and February 2019. For testing model performance in predicting core signaling pathway, patients with IDH wild-type glioblastoma from a retrospective analysis from a registry (ClinicalTrials.gov NCT02619890) were evaluated. Radiogenomic feature selection was performed by using t tests, least absolute shrinkage and selection operator penalization, and random forest. Combining radiogenomic features, age, and location, the performance of predicting receptor tyrosine kinase (RTK), tumor protein p53 (P53), and retinoblastoma 1 pathways was evaluated by using the area under the receiver operating characteristic curve (AUC). Results There were 120 patients (52 years ± 13 [standard deviation]; 61 women) who were evaluated. Eighty-five patients (51 years ± 13; 43 men) were in the training set and 35 patients with IDH wild-type glioblastoma (56 years ± 12; 19 women) were in the validation set. Radiogenomics model identified 71 features in the RTK, 17 features in P53, and 35 features in the retinoblastoma pathway. The combined model showed better performance than anatomic imaging-based prediction in the RTK (P = .03) and retinoblastoma (P = .03) and perfusion imaging-based prediction in the P53 pathway (P = .04) in the training set. AUC values of the combined model for the prediction of core signaling pathways were 0.88 (95% confidence interval [CI]: 0.74, 1) for RTK, 0.76 (95% CI: 0.59, 0.92) for P53, and 0.81 (95% CI: 0.64, 0.97) for retinoblastoma in the validation set. Conclusion A diffusion- and perfusion-weighted MRI radiomics model can help characterize core signaling pathways and potentially guide targeted therapy for isocitrate dehydrogenase wild-type glioblastoma. © RSNA, 2019 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
C_关注了科研通微信公众号
1秒前
一颗葡萄白菜完成签到,获得积分10
2秒前
大个应助叶子采纳,获得10
2秒前
3秒前
带善人发布了新的文献求助10
3秒前
可爱的函函应助潘榆采纳,获得10
3秒前
火星上雨珍完成签到,获得积分10
4秒前
无花果应助刻苦的绿竹采纳,获得10
7秒前
cchh发布了新的文献求助10
7秒前
zy关注了科研通微信公众号
8秒前
zheng完成签到 ,获得积分10
8秒前
8秒前
孟冬发布了新的文献求助10
9秒前
Wanna完成签到 ,获得积分10
11秒前
小叶曲完成签到,获得积分10
12秒前
12秒前
77777发布了新的文献求助10
13秒前
科研通AI2S应助带善人采纳,获得10
14秒前
15秒前
16秒前
芒果不忙发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
点点完成签到,获得积分10
20秒前
haoliu发布了新的文献求助10
20秒前
zy发布了新的文献求助10
21秒前
xwwx发布了新的文献求助20
22秒前
风中的棒棒糖完成签到 ,获得积分10
23秒前
黄毅发布了新的文献求助10
23秒前
可爱的函函应助AsRNA采纳,获得10
23秒前
25秒前
麻小医发布了新的文献求助20
26秒前
浮游应助yunjian1583采纳,获得30
27秒前
28秒前
平安发布了新的文献求助30
28秒前
Ava应助清新的初雪采纳,获得10
29秒前
29秒前
18298859129发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312151
求助须知:如何正确求助?哪些是违规求助? 4455906
关于积分的说明 13864872
捐赠科研通 4344329
什么是DOI,文献DOI怎么找? 2385806
邀请新用户注册赠送积分活动 1380201
关于科研通互助平台的介绍 1348522