放射基因组学
异柠檬酸脱氢酶
医学
接收机工作特性
IDH1
胶质瘤
胶质母细胞瘤
无线电技术
癌症研究
核医学
肿瘤科
放射科
磁共振成像
内科学
突变
遗传学
生物
基因
生物化学
酶
作者
Ji Eun Park,Ho Sung Kim,Seo Young Park,Soo Jung Nam,Sung‐Min Chun,Youngheun Jo,Jeong Hoon Kim
出处
期刊:Radiology
[Radiological Society of North America]
日期:2019-12-17
卷期号:294 (2): 388-397
被引量:56
标识
DOI:10.1148/radiol.2019190913
摘要
Background Next-generation sequencing (NGS) enables highly sensitive cancer genomics analysis, but its clinical implications for therapeutic options from imaging-based prediction have been limited. Purpose To predict core signaling pathways in isocitrate dehydrogenase (IDH) wild-type glioblastoma by using diffusion and perfusion MRI radiomics and NGS. Materials and Methods The radiogenomics model was developed by using retrospective patients with glioma who underwent NGS and anatomic, diffusion-, and perfusion-weighted imaging between March 2017 and February 2019. For testing model performance in predicting core signaling pathway, patients with IDH wild-type glioblastoma from a retrospective analysis from a registry (ClinicalTrials.gov NCT02619890) were evaluated. Radiogenomic feature selection was performed by using t tests, least absolute shrinkage and selection operator penalization, and random forest. Combining radiogenomic features, age, and location, the performance of predicting receptor tyrosine kinase (RTK), tumor protein p53 (P53), and retinoblastoma 1 pathways was evaluated by using the area under the receiver operating characteristic curve (AUC). Results There were 120 patients (52 years ± 13 [standard deviation]; 61 women) who were evaluated. Eighty-five patients (51 years ± 13; 43 men) were in the training set and 35 patients with IDH wild-type glioblastoma (56 years ± 12; 19 women) were in the validation set. Radiogenomics model identified 71 features in the RTK, 17 features in P53, and 35 features in the retinoblastoma pathway. The combined model showed better performance than anatomic imaging-based prediction in the RTK (P = .03) and retinoblastoma (P = .03) and perfusion imaging-based prediction in the P53 pathway (P = .04) in the training set. AUC values of the combined model for the prediction of core signaling pathways were 0.88 (95% confidence interval [CI]: 0.74, 1) for RTK, 0.76 (95% CI: 0.59, 0.92) for P53, and 0.81 (95% CI: 0.64, 0.97) for retinoblastoma in the validation set. Conclusion A diffusion- and perfusion-weighted MRI radiomics model can help characterize core signaling pathways and potentially guide targeted therapy for isocitrate dehydrogenase wild-type glioblastoma. © RSNA, 2019 Online supplemental material is available for this article.
科研通智能强力驱动
Strongly Powered by AbleSci AI