Investigating the challenges and generalizability of deep learning brain conductivity mapping

概化理论 深度学习 计算机科学 人工智能 卷积神经网络 电导率 模式识别(心理学) 稳健性(进化) 噪音(视频) 人工神经网络 机器学习 数学 统计 物理 生物化学 化学 量子力学 图像(数学) 基因
作者
Nils Hampe,Ulrich Katscher,Cornelis A. T. van den Berg,Khin Khin Tha,Stefano Mandija
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:65 (13): 135001-135001 被引量:18
标识
DOI:10.1088/1361-6560/ab9356
摘要

To investigate deep learning electrical properties tomography (EPT) for application on different simulated and in-vivo datasets, including pathologies for brain conductivity reconstructions, 3D patch-based convolutional neural networks were trained to predict conductivity maps from B 1 transceive phase data. To compare the performance of DL-EPT networks on different datasets, three datasets were used throughout this work, one from simulations and two from in-vivo measurements from healthy volunteers and patients with brain lesions, respectively. At first, networks trained on simulations were tested on all datasets with different levels of homogeneous Gaussian noise introduced in training and testing. Secondly, to investigate potential robustness towards systematical differences between simulated and measured phase maps, in-vivo data with conductivity labels from conventional EPT were used for training. High quality conductivity reconstructions from networks trained on simulations with and without noise confirm the potential of deep learning for EPT. However, when this network is used for in-vivo reconstructions, measurement related artifacts affect the quality of conductivity maps. Training DL-EPT networks using conductivity labels from conventional EPT improves the quality of the results. Networks trained on realistic simulations yield reconstruction artifacts when applied to in-vivo data. Training with realistic phase data and conductivity labels from conventional EPT allows for reducing these artifacts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yduan完成签到,获得积分20
刚刚
852应助小也采纳,获得10
刚刚
完美世界应助vivia采纳,获得10
2秒前
3秒前
Chem34发布了新的文献求助10
6秒前
乐乐应助一起采纳,获得10
6秒前
pjxxx完成签到 ,获得积分10
7秒前
imlarry发布了新的文献求助10
8秒前
So完成签到 ,获得积分10
13秒前
89757发布了新的文献求助10
13秒前
fffffffffffffff完成签到 ,获得积分10
17秒前
imlarry完成签到,获得积分10
18秒前
20秒前
rrrrroxie发布了新的文献求助10
26秒前
anny.white完成签到,获得积分10
29秒前
乐乐应助小鼠鼠的小狐狸采纳,获得30
29秒前
30秒前
搜集达人应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
充电宝应助科研通管家采纳,获得10
35秒前
FashionBoy应助科研通管家采纳,获得10
35秒前
JamesPei应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
35秒前
情怀应助科研通管家采纳,获得10
35秒前
FashionBoy应助科研通管家采纳,获得10
35秒前
35秒前
35秒前
动漫大师发布了新的文献求助10
36秒前
fishhh发布了新的文献求助10
36秒前
37秒前
38秒前
细心书蕾完成签到 ,获得积分10
39秒前
泡泡鱼完成签到 ,获得积分10
41秒前
46秒前
望北完成签到 ,获得积分10
46秒前
gleep1发布了新的文献求助10
50秒前
pluto应助完美梨愁采纳,获得20
51秒前
言午完成签到,获得积分10
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778382
求助须知:如何正确求助?哪些是违规求助? 3324102
关于积分的说明 10217105
捐赠科研通 3039323
什么是DOI,文献DOI怎么找? 1667963
邀请新用户注册赠送积分活动 798447
科研通“疑难数据库(出版商)”最低求助积分说明 758385