Individual brain metabolic connectome indicator based on Kullback-Leibler Divergence Similarity Estimation predicts progression from mild cognitive impairment to Alzheimer’s dementia

连接体 痴呆 内科学 相似性(几何) 医学 分歧(语言学) 心理学 统计 数学 人工智能 神经科学 计算机科学 疾病 图像(数学) 功能连接 哲学 语言学
作者
Min Wang,Jiehui Jiang,Zhuangzhi Yan,Ian Alberts,Jingjie Ge,Huiwei Zhang,Chuantao Zuo,Jin‐Tai Yu,Axel Rominger,Kuangyu Shi
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:47 (12): 2753-2764 被引量:70
标识
DOI:10.1007/s00259-020-04814-x
摘要

Abstract Purpose Positron emission tomography (PET) with 18 F-fluorodeoxyglucose (FDG) reveals altered cerebral metabolism in individuals with mild cognitive impairment (MCI) and Alzheimer’s dementia (AD). Previous metabolic connectome analyses derive from groups of patients but do not support the prediction of an individual’s risk of conversion from present MCI to AD. We now present an individual metabolic connectome method, namely the Kullback-Leibler Divergence Similarity Estimation (KLSE), to characterize brain-wide metabolic networks that predict an individual’s risk of conversion from MCI to AD. Methods FDG-PET data consisting of 50 healthy controls, 332 patients with stable MCI, 178 MCI patients progressing to AD, and 50 AD patients were recruited from ADNI database. Each individual’s metabolic brain network was ascertained using the KLSE method. We compared intra- and intergroup similarity and difference between the KLSE matrix and group-level matrix, and then evaluated the network stability and inter-individual variation of KLSE. The multivariate Cox proportional hazards model and Harrell’s concordance index (C-index) were employed to assess the prediction performance of KLSE and other clinical characteristics. Results The KLSE method captures more pathological connectivity in the parietal and temporal lobes relative to the typical group-level method, and yields detailed individual information, while possessing greater stability of network organization (within-group similarity coefficient, 0.789 for sMCI and 0.731 for pMCI). Metabolic connectome expression was a superior predictor of conversion than were other clinical assessments (hazard ratio (HR) = 3.55; 95% CI, 2.77–4.55; P < 0.001). The predictive performance improved further upon combining clinical variables in the Cox model, i.e., C-indices 0.728 (clinical), 0.730 (group-level pattern model), 0.750 (imaging connectome), and 0.794 (the combined model). Conclusion The KLSE indicator identifies abnormal brain networks predicting an individual’s risk of conversion from MCI to AD, thus potentially constituting a clinically applicable imaging biomarker.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子铭发布了新的文献求助10
刚刚
kuzzi完成签到,获得积分10
3秒前
4秒前
9778发布了新的文献求助10
8秒前
淡然的尔白完成签到,获得积分20
13秒前
14秒前
轻松盼烟发布了新的文献求助20
16秒前
flower完成签到,获得积分10
17秒前
17秒前
亮仔发布了新的文献求助10
17秒前
20秒前
GCB完成签到,获得积分20
21秒前
张wx_100完成签到,获得积分10
29秒前
30秒前
32秒前
36秒前
xhl发布了新的文献求助10
37秒前
JerryJi发布了新的文献求助10
42秒前
文艺秋双完成签到 ,获得积分10
44秒前
假装有昵称完成签到,获得积分10
44秒前
44秒前
cyy完成签到 ,获得积分10
45秒前
50秒前
51秒前
ssslls发布了新的文献求助10
53秒前
热心易绿完成签到 ,获得积分10
53秒前
念梦完成签到,获得积分10
54秒前
55秒前
56秒前
Lucas应助ssslls采纳,获得10
57秒前
1分钟前
俭朴依白完成签到,获得积分10
1分钟前
ZQ发布了新的文献求助10
1分钟前
宋宋发布了新的文献求助10
1分钟前
哈哈哈发布了新的文献求助10
1分钟前
SciGPT应助CJL采纳,获得10
1分钟前
安详的蜜粉完成签到,获得积分10
1分钟前
黄花花发布了新的文献求助10
1分钟前
李白白完成签到,获得积分10
1分钟前
自信安荷完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942406
求助须知:如何正确求助?哪些是违规求助? 3487742
关于积分的说明 11044804
捐赠科研通 3218087
什么是DOI,文献DOI怎么找? 1778781
邀请新用户注册赠送积分活动 864413
科研通“疑难数据库(出版商)”最低求助积分说明 799438