Improving identification ability of adulterants in powdered Panax notoginseng using particle swarm optimization and data fusion

主成分分析 粒子群优化 三七 支持向量机 人工智能 模式识别(心理学) 化学计量学 计算机科学 材料科学 数学 机器学习 医学 病理 替代医学
作者
Xiaodong Yang,Jie Song,Peng Lin,Lutao Gao,Xuwen Liu,Lin Xie,Guanglin Li
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:103: 103101-103101 被引量:27
标识
DOI:10.1016/j.infrared.2019.103101
摘要

Panax notoginseng (P. notoginseng) is frequently targeted for adulteration with lower-grade P. notoginseng because of its high price. This paper presents a novel method to improve the identification ability of adulterants using spectroscopic techniques and chemometrics. P. notoginseng powder of different grades were blended at different percentages (0–100%), in which the minimum blend ratio was 0.5%. NIR (12,497–4000 cm−1) and FT-MIR (4000–400 cm−1) spectra of samples were acquired. The wavenumbers of 7099–4200 cm−1, 3600–2750 cm−1, and 1750–400 cm−1 were selected manually as characteristic spectra, which included 3706 variables. Then principal component analysis (PCA) was used to further reduce the data dimension of characteristic spectra, and the first nine principal components (PCs) were applied to build classification models of 14 (the ratio of 0.5% excluded) and 15 kinds of blend ratios. Finally, Support vector machine (SVM) was built for classification of adulterants of different blend ratio. The accuracy of prediction set is 92.46% and 91.79%, respectively. On this basis, particle swarm optimization (PSO) was applied to optimize the parameters of SVM, and the accuracy of prediction set increased to 96.65% and 96.97%, respectively. The results demonstrate that the application of data fusion of NIR and FT-MIR spectra combined with SVM optimized by PSO can improve the identification ability of adulterants in powdered P. notoginseng.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助chengzi采纳,获得10
刚刚
1秒前
la关闭了la文献求助
2秒前
彤彤发布了新的文献求助10
3秒前
大壳完成签到,获得积分10
4秒前
5秒前
廖同学完成签到 ,获得积分10
6秒前
勤奋的凌翠完成签到 ,获得积分10
7秒前
7秒前
8秒前
小马甲应助quququ采纳,获得10
8秒前
8秒前
8秒前
11秒前
11秒前
烂漫的从彤完成签到,获得积分10
11秒前
12秒前
周舟发布了新的文献求助10
12秒前
暮光不ling发布了新的文献求助10
13秒前
闹心发布了新的文献求助10
13秒前
14秒前
小包子完成签到,获得积分10
14秒前
慕青应助sljzhangbiao11采纳,获得20
15秒前
阿童木完成签到 ,获得积分10
15秒前
15秒前
liyongguang发布了新的文献求助10
15秒前
NexusExplorer应助痞子wu采纳,获得10
15秒前
15秒前
16秒前
猫不笑发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
额ee完成签到,获得积分10
18秒前
科研通AI2S应助年轻的烨华采纳,获得10
19秒前
佳丽发布了新的文献求助10
19秒前
快乐的忆山完成签到,获得积分10
19秒前
Allen发布了新的文献求助10
19秒前
20秒前
周舟完成签到,获得积分20
20秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
植物基因组学(第二版) 1000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4093897
求助须知:如何正确求助?哪些是违规求助? 3632367
关于积分的说明 11513216
捐赠科研通 3343100
什么是DOI,文献DOI怎么找? 1837458
邀请新用户注册赠送积分活动 905169
科研通“疑难数据库(出版商)”最低求助积分说明 822989