Some robust approaches based on copula for monitoring bivariate processes and component-wise assessment

二元分析 连接词(语言学) 非参数统计 边际分布 计算机科学 联合概率分布 单变量 稳健性(进化) 多元统计 数据挖掘 计量经济学 统计 数学 算法 机器学习 随机变量 生物化学 基因 化学
作者
Zhi Song,Amitava Mukherjee,Jiujun Zhang
出处
期刊:European Journal of Operational Research [Elsevier BV]
卷期号:289 (1): 177-196 被引量:19
标识
DOI:10.1016/j.ejor.2020.07.016
摘要

In this paper, we develop two adaptive approaches for detecting the signal source in a bivariate process when a shift occurs in the location vector or the scale matrix or both. The proposed method capitalises the notion of Sklar's principle of expressing any multivariate joint distribution in terms of univariate marginal-distribution functions and a copula, which represents the dependence structure between the variables. Motivated by this, we recommend monitoring the two marginal distributions and the copula function simultaneously using appropriate nonparametric (distribution-free) test statistics. At each stage of Phase-II monitoring, we adopt the permutation method for computing the individual p-values and derive the plotting statistics of our proposed schemes combining suitable transforms of the three p-values of the component testing. We establish the in-control robustness of the proposed surveillance plans and compare them with two competitors in terms of run length properties. Performance of the proposed schemes in detecting a correct out-of-control signal is as good or better than some existing charting schemes for bivariate process monitoring. The novelty of our proposed technique lies in the fact that it indigenously helps in identifying the component(s) responsible for the signal, which is not straightforward with the traditional schemes for surveillance of a bivariate process. Numerical results substantiate that the proposed procedure performs significantly better than its competitors in many cases. Also, we investigate the percentage of correct diagnosis of a signal via the proposed charting schemes. Nowadays, in monitoring and control of smooth service operations, the use of quality monitoring has increased than ever before, but the problem and data structures become more complicated in the Industry 4.0 era. We analyse two real case studies, one in the context of monitoring the response time and service quality in a call centre and the other related to the inspection of product quality, to illustrate the application of the proposed schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桃子发布了新的文献求助10
1秒前
1秒前
斯文明杰发布了新的文献求助10
1秒前
1秒前
Rye227应助如意的书南采纳,获得10
2秒前
3秒前
青青2020完成签到,获得积分10
3秒前
3秒前
orixero应助www采纳,获得10
3秒前
3秒前
wdnyrrc发布了新的文献求助10
4秒前
zhc发布了新的文献求助30
6秒前
酷波er应助aha采纳,获得10
7秒前
jason发布了新的文献求助10
7秒前
squeak完成签到,获得积分10
8秒前
MartinaLZ应助熊猫侠采纳,获得10
9秒前
103921wjk发布了新的文献求助10
9秒前
上官若男应助斯文明杰采纳,获得10
9秒前
12秒前
13秒前
阿飘应助科研通管家采纳,获得10
13秒前
CWNU_HAN应助科研通管家采纳,获得30
13秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
14秒前
阿飘应助科研通管家采纳,获得10
14秒前
大个应助科研通管家采纳,获得10
14秒前
何吉民完成签到,获得积分10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
iNk应助科研通管家采纳,获得10
14秒前
阿飘应助科研通管家采纳,获得10
14秒前
李健应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得50
14秒前
阿飘应助科研通管家采纳,获得20
14秒前
852应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得10
14秒前
无花果应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778345
求助须知:如何正确求助?哪些是违规求助? 3323941
关于积分的说明 10216732
捐赠科研通 3039243
什么是DOI,文献DOI怎么找? 1667897
邀请新用户注册赠送积分活动 798409
科研通“疑难数据库(出版商)”最低求助积分说明 758385