EDN: Salient Object Detection via Extremely-Downsampled Network

增采样 计算机科学 人工智能 突出 SPARK(编程语言) 棱锥(几何) 特征(语言学) 卷积(计算机科学) 目标检测 计算机视觉 特征提取 编码(集合论) 模式识别(心理学) 比例(比率) 对象(语法) 图像(数学) 人工神经网络 语言学 哲学 物理 集合(抽象数据类型) 量子力学 光学 程序设计语言
作者
Yu-Huan Wu,Yun Liu,Le Zhang,Ming–Ming Cheng,Bo Ren
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 3125-3136 被引量:109
标识
DOI:10.1109/tip.2022.3164550
摘要

Recent progress on salient object detection (SOD) mainly benefits from multi-scale learning, where the high-level and low-level features collaborate in locating salient objects and discovering fine details, respectively. However, most efforts are devoted to low-level feature learning by fusing multi-scale features or enhancing boundary representations. High-level features, which although have long proven effective for many other tasks, yet have been barely studied for SOD. In this paper, we tap into this gap and show that enhancing high-level features is essential for SOD as well. To this end, we introduce an Extremely-Downsampled Network (EDN), which employs an extreme downsampling technique to effectively learn a global view of the whole image, leading to accurate salient object localization. To accomplish better multi-level feature fusion, we construct the Scale-Correlated Pyramid Convolution (SCPC) to build an elegant decoder for recovering object details from the above extreme downsampling. Extensive experiments demonstrate that EDN achieves state-of-the-art performance with real-time speed. Our efficient EDN-Lite also achieves competitive performance with a speed of 316fps. Hence, this work is expected to spark some new thinking in SOD. Code is available at https://github.com/yuhuan-wu/EDN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
飘逸的海白完成签到,获得积分20
1秒前
3秒前
小樹完成签到,获得积分10
3秒前
刻苦问凝完成签到,获得积分10
3秒前
求文献发布了新的文献求助10
4秒前
胡萝卜发布了新的文献求助10
5秒前
6秒前
一念来回发布了新的文献求助10
6秒前
6秒前
周老师应助包容的瑾瑜采纳,获得20
7秒前
youasheng发布了新的文献求助10
10秒前
孺子牛发布了新的文献求助10
10秒前
笗一一完成签到 ,获得积分10
10秒前
从容芮应助科研通管家采纳,获得20
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
Hello应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
12秒前
朱大帅完成签到,获得积分10
12秒前
Leon发布了新的文献求助10
13秒前
lab发布了新的文献求助10
14秒前
14秒前
一念来回完成签到,获得积分10
15秒前
18秒前
吴怀硕完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
Plucky完成签到,获得积分10
20秒前
Ava应助Lily_03采纳,获得50
20秒前
Leon完成签到,获得积分10
21秒前
23秒前
23秒前
fanfan应助SPark采纳,获得10
23秒前
25秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867452
求助须知:如何正确求助?哪些是违规求助? 3409804
关于积分的说明 10665101
捐赠科研通 3133998
什么是DOI,文献DOI怎么找? 1728747
邀请新用户注册赠送积分活动 833077
科研通“疑难数据库(出版商)”最低求助积分说明 780550