TasselNetV2+: A Fast Implementation for High-Throughput Plant Counting From High-Resolution RGB Imagery

计算机科学 人工智能 瓶颈 计算机视觉 吞吐量 目标检测 RGB颜色模型 跳跃式监视 效率低下 模式识别(心理学) 电信 嵌入式系统 经济 微观经济学 无线
作者
Hao Lü,Zhiguo Cao
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:11 被引量:68
标识
DOI:10.3389/fpls.2020.541960
摘要

Plant counting runs through almost every stage of agricultural production from seed breeding, germination, cultivation, fertilization, pollination to yield estimation, and harvesting. With the prevalence of digital cameras, graphics processing units and deep learning-based computer vision technology, plant counting has gradually shifted from traditional manual observation to vision-based automated solutions. One of popular solutions is a state-of-the-art object detection technique called Faster R-CNN where plant counts can be estimated from the number of bounding boxes detected. It has become a standard configuration for many plant counting systems in plant phenotyping. Faster R-CNN, however, is expensive in computation, particularly when dealing with high-resolution images. Unfortunately high-resolution imagery is frequently used in modern plant phenotyping platforms such as unmanned aerial vehicles, engendering inefficient image analysis. Such inefficiency largely limits the throughput of a phenotyping system. The goal of this work hence is to provide an effective and efficient tool for high-throughput plant counting from high-resolution RGB imagery. In contrast to conventional object detection, we encourage another promising paradigm termed object counting where plant counts are directly regressed from images, without detecting bounding boxes. In this work, by profiling the computational bottleneck, we implement a fast version of a state-of-the-art plant counting model TasselNetV2 with several minor yet effective modifications. We also provide insights why these modifications make sense. This fast version, TasselNetV2+, runs an order of magnitude faster than TasselNetV2, achieving around 30 fps on image resolution of 1980 × 1080, while it still retains the same level of counting accuracy. We validate its effectiveness on three plant counting tasks, including wheat ears counting, maize tassels counting, and sorghum heads counting. To encourage the use of this tool, our implementation has been made available online at https://tinyurl.com/TasselNetV2plus .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
9秒前
9秒前
sjxbjrndkd完成签到 ,获得积分10
10秒前
11秒前
14秒前
15秒前
glimmer发布了新的文献求助10
16秒前
魏伯安发布了新的文献求助30
16秒前
脑洞疼应助重要的如天采纳,获得10
17秒前
WittingGU发布了新的文献求助10
17秒前
19秒前
李兴发布了新的文献求助10
19秒前
JMrider完成签到,获得积分10
20秒前
21秒前
21秒前
星辰大海应助谷歌狗采纳,获得10
22秒前
Tangtang发布了新的文献求助10
24秒前
自由伊发布了新的文献求助10
24秒前
勤奋的姒完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
28秒前
溯桀发布了新的文献求助10
30秒前
32秒前
33秒前
冰魂应助端庄亦巧采纳,获得10
34秒前
LTTY完成签到,获得积分20
35秒前
小鱼爱吃鱼完成签到,获得积分10
36秒前
何代桃发布了新的文献求助50
37秒前
谷歌狗发布了新的文献求助10
37秒前
41秒前
烟花应助CEJ采纳,获得10
42秒前
ZZzz完成签到,获得积分10
44秒前
不能变太胖的小冉完成签到,获得积分10
46秒前
英姑应助文鞅采纳,获得10
46秒前
谷歌狗完成签到,获得积分10
49秒前
可爱的函函应助zy采纳,获得10
50秒前
星辰大海应助Tiffan采纳,获得10
50秒前
斯文败类应助Tiffan采纳,获得10
50秒前
51秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
The User Experience Team of One (2nd Edition) 600
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881354
求助须知:如何正确求助?哪些是违规求助? 3423725
关于积分的说明 10735812
捐赠科研通 3148676
什么是DOI,文献DOI怎么找? 1737315
邀请新用户注册赠送积分活动 838802
科研通“疑难数据库(出版商)”最低求助积分说明 784087