肠道菌群
神经保护
败血症
医学
失调
神经炎症
药理学
脑源性神经营养因子
神经营养因子
小胶质细胞
免疫学
内科学
炎症
受体
作者
Jiaming Liu,Yangjie Jin,Haijun Li,Jiaheng Yu,Tianyu Gong,Xinxin Gao,Jing Sun
标识
DOI:10.1021/acs.jafc.0c06332
摘要
Recent evidence has revealed that probiotics could affect neurodevelopment and cognitive function via regulating gut microbiota. However, the role of probiotics in sepsis-associated encephalopathy (SAE) remained unclear. This study was conducted to assess the effects and therapeutic mechanisms of probiotic Clostridium butyricum (Cb) against SAE in mice. The SAE model mouse was induced by cecal ligation and puncture (CLP) and was given by intragastric administration with Cb for 1 month. A series of behavioral tests, including neurological severity score, tail suspension test, and elevated maze test, were used to assess cognitive impairment. Nissl staining and Fluoro-Jade C (FJC) staining were used to assess neuronal injury. Microglia activation, the release of neuroinflammatory cytokines, and the levels of ionized calcium-binding adapter molecule 1 (Iba-1) and brain-derived neurotrophic factor (BDNF) in the brain were determined. The compositions of the gut microbiota were detected by 16S rRNA sequencing. Our results revealed that Cb significantly attenuated cognitive impairment and neuronal damage. Moreover, Cb significantly inhibited excessive activation of microglia, decreased Iba-1 level, and increased BDNF level in the SAE mice. In addition, Cb improved gut microbiota dysbiosis of SAE mice. These findings revealed that Cb exerted anti-inflammatory effects and improved cognitive impairment in SAE mice, and their neuroprotective mechanisms might be mediated by regulating gut microbiota.
科研通智能强力驱动
Strongly Powered by AbleSci AI