Band-Gap Engineering of FeF3·0.33H2O Nanosphere via Ni Doping as a High-Performance Lithium-Ion Battery Cathode

材料科学 电化学 阴极 兴奋剂 锂(药物) 电化学动力学 电导率 电池(电) 离子 化学工程 纳米技术 带隙 光电子学 电极 物理化学 化学 热力学 有机化学 内分泌学 工程类 功率(物理) 物理 医学
作者
Min Liu,Qun Wang,Biaobing Chen,Huiling Lei,Lei Liu,Chun Wu,Xianyou Wang,Zhenhua Yang
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:8 (41): 15651-15660 被引量:40
标识
DOI:10.1021/acssuschemeng.0c05258
摘要

Iron-based fluorides, a kind of intercalation–conversion cathode material, are considered as one of the most promising candidate cathode materials for lithium-ion batteries due to their high capacity and cheap cost. Nevertheless, poor electrical conductivity and sluggish reaction kinetics upon cycling impede their practical application. Herein, Ni-doped FeF3·0.33H2O has been put forward and fabricated by a simple solvothermal method to overcome the above deficiency. The impact of Ni doping on the physical and electrochemical performances has been studied by first-principles calculations combined with comprehensive physicochemical characterizations. The results reveal that appropriate substitution of Fe sites by Ni can result in F vacancies without changing the intrinsic crystal structure, but it not only reduces the band gap and improves its intrinsic conductivity but also broadens the ion channel, thus facilitating the rapid transport of ions and electrons to acquire excellent electrochemical properties. Compared with the bare FeF3·0.33H2O, the appropriate amount (8%) of Ni2+ doping exhibits higher reversible capacity, longer cyclic stability, and better rate capability. It presents a 412 mAh g–1 initial discharge capacity and remains 264 mAh g–1 after 100 cycles at 0.25 C (1 C = 200 mA g–1) within a range of 1.5–4.5 V. Additionally, at 2.0 C, it still delivers a high discharge capacity of 248 mAh g–1. The excellent electrochemical performance is ascribed to the improvement of electronic conductivity and reaction kinetics caused by the moderate Ni doping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
852应助宁宁要去看文献了采纳,获得10
3秒前
3秒前
歪f发布了新的文献求助10
5秒前
Ting发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
sakyadamo发布了新的文献求助10
8秒前
Jim luo发布了新的文献求助10
10秒前
fuchao发布了新的文献求助10
11秒前
易楠发布了新的文献求助10
11秒前
12秒前
kangk发布了新的文献求助10
12秒前
painting应助熊风采纳,获得10
13秒前
painting应助熊风采纳,获得10
13秒前
painting应助熊风采纳,获得10
13秒前
蔺小轩完成签到,获得积分10
14秒前
14秒前
XHL发布了新的文献求助10
16秒前
蔺小轩发布了新的文献求助10
16秒前
Jim luo完成签到,获得积分10
17秒前
Xixi完成签到 ,获得积分10
17秒前
20秒前
21秒前
跑来跳去完成签到,获得积分10
22秒前
24秒前
忧心的昊强完成签到,获得积分10
26秒前
zhouzhou发布了新的文献求助10
26秒前
jias发布了新的文献求助10
27秒前
angelsister发布了新的文献求助30
27秒前
28秒前
29秒前
葡萄汁儿发布了新的文献求助10
29秒前
稳重的尔阳完成签到,获得积分10
29秒前
纯真冰露完成签到,获得积分10
30秒前
诸葛一笑发布了新的文献求助10
31秒前
好运连连发布了新的文献求助10
32秒前
今后应助刘浩然采纳,获得10
33秒前
科研通AI2S应助fhznuli采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563713
求助须知:如何正确求助?哪些是违规求助? 4648650
关于积分的说明 14685821
捐赠科研通 4590597
什么是DOI,文献DOI怎么找? 2518657
邀请新用户注册赠送积分活动 1491243
关于科研通互助平台的介绍 1462521