Two-Terminal Fault Location Method of Distribution Network Based on Adaptive Convolution Neural Network

计算机科学 断层(地质) 陷入故障 故障指示器 卷积神经网络 人工神经网络 断层模型 故障覆盖率 实时计算 卷积(计算机科学) 人工智能 模式识别(心理学) 故障检测与隔离 工程类 电气工程 地质学 电子线路 地震学 执行机构
作者
Jiefeng Liang,Tianjun Jing,Niu Huanna,Jiangbo Wang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 54035-54043 被引量:105
标识
DOI:10.1109/access.2020.2980573
摘要

When a single-phase ground fault occurs in a distribution network, it is generally allowed to operate with faults for one to two hours, which may lead to further development of the fault and even threaten the safe operation of the power system. Therefore, when a small current system has a ground fault, it must be quickly diagnosed to shorten the time of operation with fault. In this paper, an adaptive convolutional neural network (ACNN)-based fault line selection method is proposed for a distribution network. This method improves the feature extraction ability of the network by improving the pooling model. Compared with deep belief network (DBN), it can improve the accuracy of fault classification by 7.86% and reduce the training time by 42.7%. On this basis, the secondary fault location is identified using the principle of two-terminal fault location. In this research, fault data obtained by Simulink simulation is used as training set, and ACNN model is built based on TensorFlow framework. The analysis of results proves that the model has a high fault recognition rate and fast convergence speed. It can be used as an auxiliary hand for fault diagnosis in distribution networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级蘑菇完成签到,获得积分10
刚刚
1秒前
Dobby完成签到,获得积分10
1秒前
你猜发布了新的文献求助10
3秒前
4秒前
Xiaoqiu完成签到 ,获得积分10
6秒前
Akim应助sluck采纳,获得10
6秒前
7秒前
wenwen发布了新的文献求助10
10秒前
共享精神应助田田采纳,获得30
16秒前
liudy完成签到,获得积分10
17秒前
我爱说实话完成签到,获得积分10
19秒前
20秒前
23秒前
23秒前
景代丝完成签到,获得积分10
24秒前
liudy发布了新的文献求助10
25秒前
涵泽发布了新的文献求助10
25秒前
小二郎应助焱垚采纳,获得10
25秒前
27秒前
Orange应助墨尔根戴青采纳,获得10
28秒前
领导范儿应助早日毕业佳采纳,获得10
30秒前
SYLH应助peng采纳,获得10
30秒前
Kkkkk关注了科研通微信公众号
30秒前
小林神完成签到,获得积分10
36秒前
yxrose完成签到,获得积分10
36秒前
38秒前
40秒前
40秒前
41秒前
41秒前
夏侯德东完成签到,获得积分10
42秒前
CodeCraft应助yfuujty采纳,获得10
43秒前
44秒前
44秒前
44秒前
44秒前
学不明白完成签到,获得积分10
45秒前
赘婿应助科研通管家采纳,获得10
47秒前
田田发布了新的文献求助30
47秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842873
求助须知:如何正确求助?哪些是违规求助? 3384852
关于积分的说明 10537856
捐赠科研通 3105474
什么是DOI,文献DOI怎么找? 1710311
邀请新用户注册赠送积分活动 823582
科研通“疑难数据库(出版商)”最低求助积分说明 774149