集成学习
Boosting(机器学习)
机器学习
计算机科学
撞车
集合预报
人工智能
预测能力
预测建模
堆积
回归
统计
数学
哲学
物理
认识论
程序设计语言
核磁共振
标识
DOI:10.1109/ojits.2020.3033523
摘要
Machine learning algorithms aim to improve the power of predictors over conventional regression models. This study aims to tap the predictive potential of crash mechanism-related variables using ensemble machine learning models. The results demonstrate selected models can predict severity at a high level of accuracy. The stacking model with a linear blender is preferred for the designed ensemble combination. Most bagging, boosting, and stacking algorithms perform well, indicating ensemble models are capable of improving upon individual models.
科研通智能强力驱动
Strongly Powered by AbleSci AI