Improved deep learning framework for fish segmentation in underwater videos

水下 计算机科学 人工智能 分割 深度学习 目标检测 机器学习 计算机视觉 渔业 地质学 海洋学 生物
作者
Nawaf Farhan Funkur Alshdaifat,Abdullah Zawawi Talib,Mohd Azam Osman
出处
期刊:Ecological Informatics [Elsevier]
卷期号:59: 101121-101121 被引量:66
标识
DOI:10.1016/j.ecoinf.2020.101121
摘要

Deep learning networks have become increasingly popular in recent years due to promising breakthroughs achieved in several areas. The importance of deep learning lies in the localisation and classification of an object based on frames. This study focuses on fish recognition methods in underwater videos and addresses the underlying challenges of these methods. It is important to develop effective methods to recognise fish and their movements using underwater videos. From a practical and scientific perspective, this is extremely useful to automatically recognise fish through their movement and to monitor and collect biomass in marine bodies. More importantly, it allows researchers to collect and analyse information related to the health and well-being of the Marine ecosystem. As most of the current methods work on static images, the issue arises when these methods are applied to images from videos. The existing multiple fish detection methods for underwater videos have a low detection rate due to the inherent underwater conditions such as the presence of coral reefs and other challenges which include the different sizes, shapes, colour, and speed of fish as well as marine behaviours such as the overlapping of fish. Therefore, the use of improved methods based on the latest deep learning algorithms has been proposed for multiple fish detection. This paper provides a novel framework for fish instance segmentation in underwater videos. The proposed model for improved recognition methods is composed of four main stages: 1) pre-processing method to reduce external factors in the videos for better detection and recognition of fish in underwater videos, 2) use of deep learning approach for enhanced detection of fish using RESENT, 3) enhanced detection of multiple fish based on the Region Proposal Network (RPN) architecture, and 4) use of a dynamic instance segmentation method. The results of this study indicate that the proposed framework has a better performance capability than other state-of-the-art models for multi-fish instance segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
藏锋完成签到 ,获得积分10
5秒前
jiangjiang完成签到 ,获得积分10
6秒前
8秒前
郭郭要努力ya完成签到 ,获得积分10
14秒前
雪飞杨完成签到 ,获得积分10
27秒前
语恒发布了新的文献求助10
31秒前
Jzag完成签到 ,获得积分10
31秒前
蓝桉完成签到 ,获得积分10
31秒前
小HO完成签到 ,获得积分10
33秒前
34秒前
行走的猫完成签到 ,获得积分10
34秒前
orixero应助Wang采纳,获得10
37秒前
jiaojaioo完成签到,获得积分10
50秒前
57秒前
树边灯发布了新的文献求助10
1分钟前
1分钟前
1分钟前
个性的不二完成签到 ,获得积分10
1分钟前
swordshine完成签到,获得积分0
1分钟前
短巷完成签到 ,获得积分0
1分钟前
冷静的小虾米完成签到 ,获得积分10
1分钟前
蛋妮完成签到 ,获得积分10
1分钟前
先锋老刘001完成签到,获得积分10
1分钟前
zyznh完成签到 ,获得积分10
1分钟前
小胖wwwww完成签到 ,获得积分10
1分钟前
沙脑完成签到 ,获得积分10
1分钟前
Lauren完成签到 ,获得积分10
1分钟前
小丸子博士完成签到 ,获得积分10
1分钟前
牧青完成签到 ,获得积分10
1分钟前
holly完成签到 ,获得积分10
1分钟前
cc2713206完成签到,获得积分0
1分钟前
1分钟前
Wang发布了新的文献求助10
1分钟前
Cope完成签到 ,获得积分10
1分钟前
kanong完成签到,获得积分0
1分钟前
斯文败类应助风清扬采纳,获得10
1分钟前
泡面完成签到 ,获得积分10
1分钟前
Arctic完成签到 ,获得积分10
2分钟前
wure10完成签到 ,获得积分10
2分钟前
风雨晴鸿完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1200
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5835253
求助须知:如何正确求助?哪些是违规求助? 6101313
关于积分的说明 15591740
捐赠科研通 4953762
什么是DOI,文献DOI怎么找? 2669769
邀请新用户注册赠送积分活动 1615144
关于科研通互助平台的介绍 1570156