Improved deep learning framework for fish segmentation in underwater videos

水下 计算机科学 人工智能 分割 深度学习 目标检测 机器学习 计算机视觉 渔业 地质学 海洋学 生物
作者
Nawaf Farhan Funkur Alshdaifat,Abdullah Zawawi Talib,Mohd Azam Osman
出处
期刊:Ecological Informatics [Elsevier]
卷期号:59: 101121-101121 被引量:66
标识
DOI:10.1016/j.ecoinf.2020.101121
摘要

Deep learning networks have become increasingly popular in recent years due to promising breakthroughs achieved in several areas. The importance of deep learning lies in the localisation and classification of an object based on frames. This study focuses on fish recognition methods in underwater videos and addresses the underlying challenges of these methods. It is important to develop effective methods to recognise fish and their movements using underwater videos. From a practical and scientific perspective, this is extremely useful to automatically recognise fish through their movement and to monitor and collect biomass in marine bodies. More importantly, it allows researchers to collect and analyse information related to the health and well-being of the Marine ecosystem. As most of the current methods work on static images, the issue arises when these methods are applied to images from videos. The existing multiple fish detection methods for underwater videos have a low detection rate due to the inherent underwater conditions such as the presence of coral reefs and other challenges which include the different sizes, shapes, colour, and speed of fish as well as marine behaviours such as the overlapping of fish. Therefore, the use of improved methods based on the latest deep learning algorithms has been proposed for multiple fish detection. This paper provides a novel framework for fish instance segmentation in underwater videos. The proposed model for improved recognition methods is composed of four main stages: 1) pre-processing method to reduce external factors in the videos for better detection and recognition of fish in underwater videos, 2) use of deep learning approach for enhanced detection of fish using RESENT, 3) enhanced detection of multiple fish based on the Region Proposal Network (RPN) architecture, and 4) use of a dynamic instance segmentation method. The results of this study indicate that the proposed framework has a better performance capability than other state-of-the-art models for multi-fish instance segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助醉熏的似狮采纳,获得10
1秒前
丘比特应助哈哈哈哈采纳,获得10
1秒前
mmm发布了新的文献求助10
5秒前
10秒前
10秒前
12秒前
13秒前
呀呼发布了新的文献求助10
13秒前
muhaicbj发布了新的文献求助10
14秒前
Yolo发布了新的文献求助10
18秒前
季宇完成签到,获得积分10
19秒前
科研通AI6.1应助刘大河采纳,获得10
21秒前
今后应助muhaicbj采纳,获得10
23秒前
爆米花应助反恐分子采纳,获得10
24秒前
王小波完成签到 ,获得积分10
25秒前
CipherSage应助天天都肚子疼采纳,获得10
34秒前
苏世誉完成签到,获得积分10
38秒前
39秒前
SC30完成签到,获得积分10
40秒前
40秒前
40秒前
40秒前
40秒前
40秒前
萱棚完成签到 ,获得积分10
41秒前
丘比特应助科研通管家采纳,获得10
42秒前
pluto应助科研通管家采纳,获得10
42秒前
pluto应助科研通管家采纳,获得10
42秒前
eric888应助科研通管家采纳,获得100
42秒前
思源应助科研通管家采纳,获得10
42秒前
pluto应助科研通管家采纳,获得10
42秒前
42秒前
Owen应助科研通管家采纳,获得10
42秒前
CipherSage应助科研通管家采纳,获得10
42秒前
45秒前
轨迹应助南风不竞采纳,获得10
46秒前
时生完成签到 ,获得积分10
48秒前
看书书发布了新的文献求助10
49秒前
haohao发布了新的文献求助10
49秒前
Akim应助jijiguo采纳,获得10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1400
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Signals, Systems, and Signal Processing 880
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5837963
求助须知:如何正确求助?哪些是违规求助? 6128085
关于积分的说明 15600075
捐赠科研通 4956196
什么是DOI,文献DOI怎么找? 2671456
邀请新用户注册赠送积分活动 1616661
关于科研通互助平台的介绍 1571733