Image‐based crack assessment of bridge piers using unmanned aerial vehicles and three‐dimensional scene reconstruction

码头 失真(音乐) 桥(图论) 计算机科学 特征(语言学) 结构工程 透视图(图形) 曲面(拓扑) 计算机视觉 人工智能 工程类 几何学 数学 医学 语言学 内科学 哲学 放大器 带宽(计算) 计算机网络
作者
Yu‐Fei Liu,Xin Nie,Jian‐Sheng Fan,Xiaogang Liu
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:35 (5): 511-529 被引量:204
标识
DOI:10.1111/mice.12501
摘要

Abstract Crack assessment of bridge piers using unmanned aerial vehicles (UAVs) eliminates unsafe factors of manual inspection and provides a potential way for the maintenance of transportation infrastructures. However, the implementation of UAV‐based crack assessment for real bridge piers is hindered by several key issues, including the following: (a) both perspective distortion and the geometry distortion by nonflat structural surfaces usually appear on crack images taken by the UAV system from the pier surface; however, these two kinds of distortions are difficult to correct at the same time; and (b) the crack image taken by a close‐range inspection flight UAV system is partially imaged, containing only a small part of the entire surface of the pier, and thereby hinders crack localization. In this paper, a new image‐based crack assessment methodology for bridge piers using UAV and three‐dimensional (3D) scene reconstruction is proposed. First, the data acquisition of UAV‐based crack assessment is discussed, and the UAV flight path and photography strategy for bridge pier assessment are proposed. Second, image‐based crack detection and 3D reconstruction are conducted to obtain crack width feature pair sequences and 3D surface models, respectively. Third, a new method of projecting cracks onto a meshed 3D surface triangular model is proposed, which can correct both the perspective distortion and geometry distortion by nonflat structural surfaces, and realize the crack localization. Field test investigations of crack assessment of a real bridge pier using a UAV are carried out for illustration, validation, and error analysis of the proposed methodology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
lemon完成签到,获得积分10
2秒前
冰魂应助机灵鬼采纳,获得10
3秒前
3秒前
5秒前
7秒前
Sene完成签到,获得积分10
7秒前
星辰完成签到,获得积分10
8秒前
spw完成签到 ,获得积分10
9秒前
眼角流星发布了新的文献求助10
10秒前
专注的曼卉完成签到 ,获得积分10
10秒前
hzhniubility发布了新的文献求助60
11秒前
Nancy发布了新的文献求助10
11秒前
马家奇发布了新的文献求助20
12秒前
yidi01完成签到,获得积分10
14秒前
14秒前
完美世界应助zxd采纳,获得10
18秒前
CodeCraft应助要减肥的惜萱采纳,获得10
18秒前
19秒前
nan发布了新的文献求助10
20秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
天天快乐应助科研通管家采纳,获得10
22秒前
wanci应助科研通管家采纳,获得10
22秒前
23秒前
23秒前
李爱国应助科研通管家采纳,获得10
23秒前
Owen应助科研通管家采纳,获得10
23秒前
天天快乐应助科研通管家采纳,获得10
23秒前
小二郎应助科研通管家采纳,获得10
23秒前
Jasper应助科研通管家采纳,获得10
23秒前
星辰大海应助科研通管家采纳,获得10
23秒前
在水一方应助科研通管家采纳,获得10
23秒前
柠觉呢应助科研通管家采纳,获得10
23秒前
乔垣结衣应助科研通管家采纳,获得10
24秒前
乔垣结衣应助科研通管家采纳,获得10
24秒前
科目三应助科研通管家采纳,获得10
24秒前
脑洞疼应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
Ava应助科研通管家采纳,获得10
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778270
求助须知:如何正确求助?哪些是违规求助? 3323870
关于积分的说明 10216436
捐赠科研通 3039122
什么是DOI,文献DOI怎么找? 1667788
邀请新用户注册赠送积分活动 798409
科研通“疑难数据库(出版商)”最低求助积分说明 758366