自回归积分移动平均
航空
博克斯-詹金斯
航空运输
期限(时间)
国际机场
空运货物
民用航空
航空旅行
航空学
业务
运筹学
时间序列
运输工程
工程类
计算机科学
量子力学
机器学习
物理
航空航天工程
作者
Meena Madhavan,Mohammed Ali Sharafuddin,Pairach Piboonrungroj,Ching‐Chiao Yang
标识
DOI:10.1177/0972150920923316
摘要
This study aims to forecast air passenger and cargo demand of the Indian aviation industry using the autoregressive integrated moving average (ARIMA) and Bayesian structural time series (BSTS) models. We utilized 10 years’ (2009–2018) air passenger and cargo data obtained from the Directorate General of Civil Aviation (DGCA-India) website. The study assessed both ARIMA and BSTS models’ ability to incorporate uncertainty under dynamic settings. Findings inferred that, along with ARIMA, BSTS is also suitable for short-term forecasting of all four (international passenger, domestic passenger, international air cargo, and domestic air cargo) commercial aviation sectors. Recommendations and directions for further research in medium-term and long-term forecasting of the Indian airline industry were also summarized.
科研通智能强力驱动
Strongly Powered by AbleSci AI