Application of texture analysis of b-mode ultrasound images for the quantification and prediction of intramuscular fat in living beef cattle: A methodological study

肌内脂肪 温柔 超声波 线性判别分析 肉牛 芳香 动物科学 数学 线性回归 化学 食品科学 生物 统计 医学 放射科
作者
Enrico Fiore,Giorgia Fabbri,Luigi Gallo,M. Morgante,Michele Muraro,Matteo Boso,Matteo Gianesella
出处
期刊:Research in Veterinary Science [Elsevier BV]
卷期号:131: 254-258 被引量:16
标识
DOI:10.1016/j.rvsc.2020.04.020
摘要

Intramuscular fat (IMF) contributes significantly to the aroma and tenderness of the meat, therefore playing a key role in quality determination. Yet, IMF determination methods rely on visual inspection or on fat extraction from meat samples after animals' slaughter. The aim of this methodological study was the elaboration of a process capable of predicting IMF% using real-time ultrasound (RTU) images in live beef cattle. The longissimus dorsi (LD) muscle of 26 Charolaise heifers was investigated. In vivo ultrasound images were taken and texture analysis was performed. One week after the animals' slaughter, the whole twelfth rib cut was collected, and IMF% was determined by extraction with petrol ether (Randall) method. Animals were divided in 3 groups depending on their mean lipid content percentage in 100 g meat (Group 1: IMF ≤ 4.24%; Group 2: 4.25% ≤ IMF ≤ 5.75%; Group 3: IMF ≥ 5.76%). Texture parameters were selected by a stepwise linear discriminant analysis using IMF% measured by chemical extraction (IMFqa) as the dependent variable, and the results of the texture analysis as explanatory variables. 6 variables were found predictive and molded into a multiple regression equation, this equation was then validated using IMFqa as ground truth. A high linear correlation between IMFqa and IMFpred was evident (r2 = 0.8504), ROC analysis perfomed on IMFpred comparing it to IMFqa showed a sensitivity of 80% and a specificity of 93.7%, while results from the Bland-Altman plot were ± 1.96 (±1.11SD).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
义气如萱完成签到,获得积分10
刚刚
瓜子发布了新的文献求助10
刚刚
刚刚
应应完成签到,获得积分10
刚刚
小涛哥完成签到,获得积分10
1秒前
1秒前
1秒前
大个应助xys采纳,获得10
1秒前
1秒前
1秒前
一往无前完成签到,获得积分10
1秒前
echo发布了新的文献求助10
2秒前
科研通AI5应助七七采纳,获得10
2秒前
啊哈哈发布了新的文献求助10
2秒前
www完成签到,获得积分10
3秒前
3秒前
研友_pnx37L完成签到,获得积分10
4秒前
XiuyaRen发布了新的文献求助10
5秒前
满意听白完成签到 ,获得积分10
5秒前
wanci应助未闻子规啼采纳,获得10
5秒前
李健的小迷弟应助无心采纳,获得10
5秒前
ChenYX发布了新的文献求助10
5秒前
6秒前
搜集达人应助蒋礼貌采纳,获得30
6秒前
xiaowang完成签到 ,获得积分10
6秒前
6秒前
Orange应助Grace Lee采纳,获得10
6秒前
6秒前
传奇3应助一木采纳,获得30
7秒前
科研通AI2S应助skjt采纳,获得10
7秒前
1sss完成签到,获得积分10
7秒前
NexusExplorer应助阔达代云采纳,获得10
7秒前
失重心跳完成签到,获得积分10
7秒前
7秒前
Wonderland发布了新的文献求助10
7秒前
汉堡包应助义气如萱采纳,获得10
7秒前
周游完成签到,获得积分10
8秒前
活力的丹妗完成签到,获得积分10
8秒前
溜溜莓发布了新的文献求助10
9秒前
浪者漫心发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193127
求助须知:如何正确求助?哪些是违规求助? 4375849
关于积分的说明 13627033
捐赠科研通 4230492
什么是DOI,文献DOI怎么找? 2320506
邀请新用户注册赠送积分活动 1318858
关于科研通互助平台的介绍 1269142