A methodological framework for identifying potential sources of soil heavy metal pollution based on machine learning: A case study in the Yangtze Delta, China

污染 环境科学 三角洲 环境保护 环境资源管理 生态学 工程类 生物 航空航天工程
作者
Xiaolin Jia,Bifeng Hu,Ben P. Marchant,Lu Zhou,Zhou Shi,Yi Zhu
出处
期刊:Environmental Pollution [Elsevier BV]
卷期号:250: 601-609 被引量:101
标识
DOI:10.1016/j.envpol.2019.04.047
摘要

It is a great challenge to identify the many and varied sources of soil heavy metal pollution. Often little information is available regarding the anthropogenic factors and enterprises that could potentially pollute soils. In this study we use freely available geographical data from a search engine in conjunction with machine learning methodologies to identify and classify potentially polluting enterprises in the Yangtze Delta, China. The data were classified into 31 separate and four integrated industry types by five different machine learning approaches. Multinomial naive Bayesian (NB) methods achieved an accuracy of 87% and Kappa coefficient of 0.82 and were used to classify the geographic data from more than 260,000 enterprises. The relationship between the different industry classes and measurements of soil cadmium (Cd) and mercury (Hg) concentrations was explored using bivariate local Moran's I analysis. The analysis revealed areas where different industry classes had led to soil pollution. In the case of Cd, elevated concentrations also occurred in some areas because of excessive fertilization and coal mining. This study provides a new approach to investigate the interaction between anthropogenic pollution and natural sources of soil heavy metals to inform pollution control and planning decisions regarding the location of industrial sites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小张张子完成签到,获得积分10
1秒前
1秒前
1秒前
华仔应助Motor_22采纳,获得30
3秒前
wws发布了新的文献求助10
4秒前
lxrong发布了新的文献求助10
5秒前
5秒前
科研通AI5应助泡儿夫采纳,获得30
6秒前
Z1070741749完成签到,获得积分10
7秒前
8秒前
8秒前
mcs发布了新的文献求助20
8秒前
10秒前
现代含桃完成签到,获得积分10
10秒前
wanci应助元谷雪采纳,获得10
10秒前
万万完成签到,获得积分10
10秒前
10秒前
小张张子发布了新的文献求助10
11秒前
勤劳善良的胖蜜蜂完成签到,获得积分10
11秒前
稳重的小杨完成签到,获得积分10
12秒前
情怀应助聪慧小鸭子采纳,获得10
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
15秒前
科研者发布了新的文献求助10
15秒前
粗心的绾绾应助kangkang采纳,获得10
15秒前
123完成签到,获得积分20
17秒前
17秒前
hhh完成签到,获得积分10
17秒前
17秒前
19秒前
BakedMax完成签到,获得积分10
20秒前
卡卡罗特发布了新的文献求助10
20秒前
hhh发布了新的文献求助10
21秒前
西门子云完成签到,获得积分10
21秒前
骆展羽完成签到 ,获得积分10
22秒前
22秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810381
求助须知:如何正确求助?哪些是违规求助? 3354913
关于积分的说明 10373163
捐赠科研通 3071434
什么是DOI,文献DOI怎么找? 1686904
邀请新用户注册赠送积分活动 811304
科研通“疑难数据库(出版商)”最低求助积分说明 766591