Underestimated ecosystem carbon turnover time and sequestration under the steady state assumption: A perspective from long‐term data assimilation

生态系统 环境科学 气候变化 固碳 初级生产 涡度相关法 大气科学 数据同化 森林生态学 气候学 生态学 地理 气象学 二氧化碳 生物 地质学
作者
Rong Ge,Honglin He,Xiaoli Ren,Li Zhang,Guirui Yu,T. Luke Smallman,Tao Zhou,Shi‐Yong Yu,Yiqi Luo,Zongqiang Xie,Silong Wang,Huimin Wang,Guoyi Zhou,Qi‐Bin Zhang,Anzhi Wang,Ze‐Xin Fan,Yiping Zhang,Weijun Shen,Huajun Yin,Luxiang Lin
出处
期刊:Global Change Biology [Wiley]
卷期号:25 (3): 938-953 被引量:48
标识
DOI:10.1111/gcb.14547
摘要

Abstract It is critical to accurately estimate carbon (C) turnover time as it dominates the uncertainty in ecosystem C sinks and their response to future climate change. In the absence of direct observations of ecosystem C losses, C turnover times are commonly estimated under the steady state assumption ( SSA ), which has been applied across a large range of temporal and spatial scales including many at which the validity of the assumption is likely to be violated. However, the errors associated with improperly applying SSA to estimate C turnover time and its covariance with climate as well as ecosystem C sequestrations have yet to be fully quantified. Here, we developed a novel model‐data fusion framework and systematically analyzed the SSA ‐induced biases using time‐series data collected from 10 permanent forest plots in the eastern China monsoon region. The results showed that (a) the SSA significantly underestimated mean turnover times ( MTT s) by 29%, thereby leading to a 4.83‐fold underestimation of the net ecosystem productivity ( NEP ) in these forest ecosystems, a major C sink globally; (b) the SSA ‐induced bias in MTT and NEP correlates negatively with forest age, which provides a significant caveat for applying the SSA to young‐aged ecosystems; and (c) the sensitivity of MTT to temperature and precipitation was 22% and 42% lower, respectively, under the SSA . Thus, under the expected climate change, spatiotemporal changes in MTT are likely to be underestimated, thereby resulting in large errors in the variability of predicted global NEP . With the development of observation technology and the accumulation of spatiotemporal data, we suggest estimating MTT s at the disequilibrium state via long‐term data assimilation, thereby effectively reducing the uncertainty in ecosystem C sequestration estimations and providing a better understanding of regional or global C cycle dynamics and C‐climate feedback.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助天马采纳,获得10
1秒前
热心的血茗完成签到,获得积分20
1秒前
2秒前
玥玥发布了新的文献求助10
4秒前
蟹黄堡发布了新的文献求助10
5秒前
6秒前
6秒前
郑春梅完成签到 ,获得积分10
7秒前
啦啦啦啦发布了新的文献求助10
8秒前
bgt完成签到 ,获得积分10
8秒前
9秒前
涓尘发布了新的文献求助10
9秒前
和谐万恶完成签到 ,获得积分20
9秒前
juaner完成签到,获得积分10
11秒前
jyf完成签到,获得积分10
12秒前
领导范儿应助zheweiwang采纳,获得10
12秒前
欣慰的白羊完成签到,获得积分10
13秒前
vayne完成签到,获得积分10
13秒前
慕青应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
15秒前
15秒前
汉堡包应助科研通管家采纳,获得20
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
15秒前
慕青应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
LukeLion发布了新的文献求助10
15秒前
16秒前
Hello应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
希望天下0贩的0应助Ruoru采纳,获得10
17秒前
量子星尘发布了新的文献求助10
18秒前
bobo完成签到 ,获得积分10
19秒前
扣扣尼哇发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421915
求助须知:如何正确求助?哪些是违规求助? 4536953
关于积分的说明 14155496
捐赠科研通 4453516
什么是DOI,文献DOI怎么找? 2442919
邀请新用户注册赠送积分活动 1434343
关于科研通互助平台的介绍 1411408