Rapid profiling of alkaloid analogues in Sinomenii Caulis by an integrated characterization strategy and quantitative analysis

青藤碱 化学 生物碱 色谱法 质谱法 高效液相色谱法 化学成分 串联质谱法 小檗碱 立体化学 药理学 生物化学 医学
作者
Zheng‐Meng Jiang,Lan-jin Wang,Han-Qing Pang,Guo Yong,Ping‐Ting Xiao,Chu Chu,Long Guo,E‐Hu Liu
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier BV]
卷期号:174: 376-385 被引量:38
标识
DOI:10.1016/j.jpba.2019.06.011
摘要

Alkaloids, the principal constituents in the caulis of Sinomenium acutum, have gained an increasing interest over the past decades since they are widely employed as a clinical treatment for rheumatoid arthritis. In the present study, an integrated characterization strategy by combining mass defect filtering-based structure classification (MDFSC) and diagnostic fragment-ion-based extension (DFIBE) was firstly proposed for rapid profiling of alkaloids in Sinomenii Caulis (SC) via ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS). The rectangular MDFSC window could more accurately screen the target alkaloids of different types, and the DFIBE could facilitate the acquisition of characteristic fragment ions for structural elucidation of alkaloids. High-performance liquid chromatography (HPLC) fingerprints with principal component analysis (PCA) and hierarchical clustering analysis (HCA) was established for identifying the chemical markers and simultaneous determination of sinomenine, magnoflorine, menisperine, stepharanine and ehydrodiscretine. A total of 91 alkaloids, including 82 targeted ones (26 morphinans, 22 aporphines, 20 protoberberines and 14 benzylisoquinolines) were unambiguously identified or tentatively characterized in SC, and 14 of them were reported for the first time. Sinomenine and magnoflorine could be selected as chemical markers to evaluate the quality of SC from different localities. In conclusion, the proposed method provided a potential approach for chemical profiling and holistic quality control of herbal medicines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助荷珠采纳,获得10
刚刚
刚刚
大模型应助ZYX采纳,获得10
1秒前
zfp发布了新的文献求助10
1秒前
明理的念云完成签到,获得积分10
2秒前
樊小雾发布了新的文献求助10
3秒前
Wian发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
5秒前
小二郎应助玉洁采纳,获得20
5秒前
深情安青应助Denmark采纳,获得50
6秒前
6秒前
6秒前
6秒前
物质尽头发布了新的文献求助10
7秒前
CodeCraft应助锦涛陆采纳,获得20
7秒前
7秒前
7秒前
大模型应助江浪浪采纳,获得50
8秒前
8秒前
LXL发布了新的文献求助10
8秒前
小蘑菇应助可爱丹烟采纳,获得10
8秒前
lyla完成签到,获得积分10
8秒前
缥缈向松发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
煲煲煲仔饭完成签到 ,获得积分10
10秒前
10秒前
晨熹发布了新的文献求助10
10秒前
小鱼发布了新的文献求助10
11秒前
科研通AI5应助陈忠正采纳,获得10
11秒前
虚拟龙猫发布了新的文献求助10
11秒前
12秒前
鱼瓜瓜发布了新的文献求助10
12秒前
12秒前
13秒前
随机昵称完成签到,获得积分10
13秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
植物基因组学(第二版) 1000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4095866
求助须知:如何正确求助?哪些是违规求助? 3633866
关于积分的说明 11518587
捐赠科研通 3344509
什么是DOI,文献DOI怎么找? 1838166
邀请新用户注册赠送积分活动 905716
科研通“疑难数据库(出版商)”最低求助积分说明 823230