MRI-based treatment planning for proton radiotherapy: dosimetric validation of a deep learning-based liver synthetic CT generation method

放射治疗计划 放射治疗 质子疗法 核医学 医学物理学 医学 放射科 计算机科学
作者
Yingzi Liu,Yang Lei,Yinan Wang,Tonghe Wang,Lei Ren,Liyong Lin,Mark W. McDonald,Walter J. Curran,Tian Liu,Jun Zhou,Xiaofeng Yang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:64 (14): 145015-145015 被引量:62
标识
DOI:10.1088/1361-6560/ab25bc
摘要

Magnetic resonance imaging (MRI) has been widely used in combination with computed tomography (CT) radiation therapy because MRI improves the accuracy and reliability of target delineation due to its superior soft tissue contrast over CT. The MRI-only treatment process is currently an active field of research since it could eliminate systematic MR-CT co-registration errors, reduce medical cost, avoid diagnostic radiation exposure, and simplify clinical workflow. The purpose of this work is to validate the application of a deep learning-based method for abdominal synthetic CT (sCT) generation by image evaluation and dosimetric assessment in a commercial proton pencil beam treatment planning system (TPS). This study proposes to integrate dense block into a 3D cycle-consistent generative adversarial networks (cycle GAN) framework in an effort to effectively learn the nonlinear mapping between MRI and CT pairs. A cohort of 21 patients with co-registered CT and MR pairs were used to test the deep learning-based sCT image quality by leave-one-out cross validation. The CT image quality, dosimetric accuracy and the distal range fidelity were rigorously checked, using side-by-side comparison against the corresponding original CT images. The average mean absolute error (MAE) was 72.87  ±  18.16 HU. The relative differences of the statistics of the PTV dose volume histogram (DVH) metrics between sCT and CT were generally less than 1%. Mean 3D gamma analysis passing rate of 1 mm/1%, 2 mm/2%, 3 mm/3% criteria with 10% dose threshold were 90.76%  ±  5.94%, 96.98%  ±  2.93% and 99.37%  ±  0.99%, respectively. The median, mean and standard deviation of absolute maximum range differences were 0.170 cm, 0.186 cm and 0.155 cm. The image similarity, dosimetric and distal range agreement between sCT and original CT suggests the feasibility of further development of an MRI-only workflow for liver proton radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梅哈完成签到 ,获得积分10
1秒前
星月夜完成签到,获得积分10
2秒前
小蘑菇应助3002采纳,获得10
2秒前
李先生发布了新的文献求助10
4秒前
5秒前
直角圆圈发布了新的文献求助10
6秒前
7秒前
zzz完成签到,获得积分10
7秒前
didi完成签到,获得积分20
9秒前
9秒前
畅快山兰发布了新的文献求助10
9秒前
李健应助qu采纳,获得10
9秒前
9秒前
orixero应助积极香菇采纳,获得10
10秒前
归尘发布了新的文献求助10
11秒前
科研通AI5应助bin采纳,获得10
11秒前
爆米花应助hbgsns采纳,获得20
11秒前
归尘完成签到,获得积分10
12秒前
12秒前
三三四发布了新的文献求助10
12秒前
ZJakariae应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
李健应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得30
13秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
仙女完成签到 ,获得积分10
14秒前
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
MchemG应助科研通管家采纳,获得30
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
蘑菇屋应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
cdercder应助科研通管家采纳,获得20
15秒前
wanci应助科研通管家采纳,获得10
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818977
求助须知:如何正确求助?哪些是违规求助? 3362055
关于积分的说明 10415138
捐赠科研通 3080350
什么是DOI,文献DOI怎么找? 1694313
邀请新用户注册赠送积分活动 814609
科研通“疑难数据库(出版商)”最低求助积分说明 768365