亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning for Hyperspectral Image Classification: An Overview

模式识别(心理学) 上下文图像分类 卷积神经网络 人工神经网络 支持向量机 图像(数学) 多光谱图像 特征(语言学)
作者
Shutao Li,Weiwei Song,Leyuan Fang,Yushi Chen,Pedram Ghamisi,Jon Atli Benediktsson
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (9): 6690-6709 被引量:335
标识
DOI:10.1109/tgrs.2019.2907932
摘要

Hyperspectral image (HSI) classification has become a hot topic in the field of remote sensing. In general, the complex characteristics of hyperspectral data make the accurate classification of such data challenging for traditional machine learning methods. In addition, hyperspectral imaging often deals with an inherently nonlinear relation between the captured spectral information and the corresponding materials. In recent years, deep learning has been recognized as a powerful feature-extraction tool to effectively address nonlinear problems and widely used in a number of image processing tasks. Motivated by those successful applications, deep learning has also been introduced to classify HSIs and demonstrated good performance. This survey paper presents a systematic review of deep learning-based HSI classification literatures and compares several strategies for this topic. Specifically, we first summarize the main challenges of HSI classification which cannot be effectively overcome by traditional machine learning methods, and also introduce the advantages of deep learning to handle these problems. Then, we build a framework that divides the corresponding works into spectral-feature networks, spatial-feature networks, and spectral–spatial-feature networks to systematically review the recent achievements in deep learning-based HSI classification. In addition, considering the fact that available training samples in the remote sensing field are usually very limited and training deep networks require a large number of samples, we include some strategies to improve classification performance, which can provide some guidelines for future studies on this topic. Finally, several representative deep learning-based classification methods are conducted on real HSIs in our experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
研友_ZG4ml8完成签到 ,获得积分0
12秒前
科研通AI5应助awww采纳,获得10
13秒前
ffff完成签到 ,获得积分10
17秒前
26秒前
awww发布了新的文献求助10
30秒前
42秒前
51秒前
1分钟前
1分钟前
wns发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
violet兰完成签到,获得积分20
1分钟前
wns关闭了wns文献求助
1分钟前
violet兰发布了新的文献求助10
1分钟前
2分钟前
NS完成签到,获得积分10
2分钟前
可爱的函函应助penny采纳,获得10
3分钟前
3分钟前
3分钟前
penny发布了新的文献求助10
3分钟前
白菜完成签到 ,获得积分10
3分钟前
科研通AI5应助penny采纳,获得10
3分钟前
Owen应助欣欣采纳,获得10
5分钟前
5分钟前
欣欣发布了新的文献求助10
5分钟前
Panther完成签到,获得积分10
5分钟前
6分钟前
传奇3应助LYL采纳,获得10
6分钟前
赫枫应助bc采纳,获得400
7分钟前
大英留子千早爱音完成签到,获得积分10
7分钟前
7分钟前
wns发布了新的文献求助10
7分钟前
8分钟前
wns完成签到,获得积分10
8分钟前
残幻应助Wei采纳,获得10
9分钟前
9分钟前
9分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788267
求助须知:如何正确求助?哪些是违规求助? 3333713
关于积分的说明 10263130
捐赠科研通 3049568
什么是DOI,文献DOI怎么找? 1673634
邀请新用户注册赠送积分活动 802090
科研通“疑难数据库(出版商)”最低求助积分说明 760511