Imaging Through Turbid Media With Vague Concentrations Based on Cosine Similarity and Convolutional Neural Network

计算机科学 斑点图案 卷积神经网络 人工智能 余弦相似度 相似性(几何) 模式识别(心理学) 计算机视觉 图像(数学)
作者
Lina Zhou,Yin Xiao,Wen Chen
出处
期刊:IEEE Photonics Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 1-15 被引量:8
标识
DOI:10.1109/jphot.2019.2927746
摘要

Underwater imaging has been extensively studied to bypass the limitation aroused by scattering and absorption of water solutions. It is highly meaningful to the development of optical imaging, especially in turbid media. The existing methods developed for reconstruction of original images from speckle patterns are applied in a stable medium, which obstruct wider applications in unpredictable media. Hence, it is crucial to take changeable environments into consideration to circumvent the limits of the extant methods. In this paper, we propose a new approach based on cosine similarity for speckle classification and convolutional neural network (CNN) for the reconstruction. The targets are placed in variant densities of turbid water mixed with certain of milk, and their corresponding intensity speckle patterns are recorded by a camera. It is verified that utilization of cosine similarity for the classification of patterns recorded in changeable media ensures high fidelity for label predictions. For a speckle pattern obtained in totally unidentified media, it can make a prediction of the density which has a high probability of accuracy. We can exploit the classified density to automatically select the most appropriate datasets to train a CNN model and then make predictions in real time with the trained CNN model. The combined model presented in this paper is tolerant to the uncertainty of turbidity. Moreover, it guarantees high-accuracy pattern classification and high-quality image reconstruction. It is feasible for potential applications in harsh water solutions with unknown perturbations of concentrations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小王爱看文献完成签到 ,获得积分10
刚刚
刚刚
1秒前
珂伟完成签到,获得积分10
1秒前
李昕玥发布了新的文献求助10
1秒前
李日辉发布了新的文献求助10
1秒前
科研通AI5应助124采纳,获得10
1秒前
Stringgggg完成签到,获得积分10
2秒前
时尚俊驰发布了新的文献求助10
2秒前
2秒前
科研通AI5应助程雯慧采纳,获得10
2秒前
屋子完成签到,获得积分10
3秒前
Lucas应助爱笑的飞瑶采纳,获得10
3秒前
3秒前
3秒前
MchemG应助bushi采纳,获得10
3秒前
自信啤酒发布了新的文献求助10
3秒前
老隋发布了新的文献求助10
4秒前
4秒前
4秒前
罗伊黄完成签到 ,获得积分10
4秒前
rrrr完成签到,获得积分10
5秒前
Tim完成签到,获得积分10
5秒前
5秒前
美人鱼听不了超声波完成签到 ,获得积分10
5秒前
6秒前
6秒前
bbll完成签到,获得积分10
6秒前
1762120发布了新的文献求助10
7秒前
悦耳如柏完成签到,获得积分10
7秒前
鹏鹏完成签到,获得积分10
7秒前
ccc发布了新的文献求助10
7秒前
加纳发布了新的文献求助10
7秒前
munantianxia完成签到,获得积分10
7秒前
8秒前
ardejiang发布了新的文献求助10
8秒前
8秒前
Stringgggg发布了新的文献求助20
8秒前
桥豆麻袋发布了新的文献求助50
9秒前
liyuqi61148完成签到,获得积分10
9秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785225
求助须知:如何正确求助?哪些是违规求助? 3330781
关于积分的说明 10248184
捐赠科研通 3046175
什么是DOI,文献DOI怎么找? 1671900
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868