Deep Learning for Matching in Search and Recommendation

计算机科学 深度学习 人工智能 匹配(统计) 语义匹配 钥匙(锁) 一般化 相关性(法律) 机器学习 原始数据 推荐系统 情报检索 数学分析 政治学 统计 计算机安全 数学 程序设计语言 法学
作者
Jun Xu,Xiangnan He,Hang Li
标识
DOI:10.1145/3209978.3210181
摘要

Matching is the key problem in both search and recommendation, that is to measure the relevance of a document to a query or the interest of a user on an item. Previously, machine learning methods have been exploited to address the problem, which learns a matching function from labeled data, also referred to as "learning to match''. In recent years, deep learning has been successfully applied to matching and significant progresses have been made. Deep semantic matching models for search and neural collaborative filtering models for recommendation are becoming the state-of-the-art technologies. The key to the success of the deep learning approach is its strong ability in learning of representations and generalization of matching patterns from raw data (e.g., queries, documents, users, and items, particularly in their raw forms). In this tutorial, we aim to give a comprehensive survey on recent progress in deep learning for matching in search and recommendation. Our tutorial is unique in that we try to give a unified view on search and recommendation. In this way, we expect researchers from the two fields can get deep understanding and accurate insight on the spaces, stimulate more ideas and discussions, and promote developments of technologies. The tutorial mainly consists of three parts. Firstly, we introduce the general problem of matching, which is fundamental in both search and recommendation. Secondly, we explain how traditional machine learning techniques are utilized to address the matching problem in search and recommendation. Lastly, we elaborate how deep learning can be effectively used to solve the matching problems in both tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助炙热莫言采纳,获得20
3秒前
5秒前
四糸乃完成签到,获得积分10
5秒前
FashionBoy应助yuqinghui98采纳,获得10
5秒前
6秒前
滕隐完成签到,获得积分20
8秒前
8秒前
10秒前
paltahun发布了新的文献求助10
10秒前
傅剑寒完成签到,获得积分20
11秒前
量子星尘发布了新的文献求助10
11秒前
wop111应助容荣采纳,获得20
11秒前
半夏应助周萌采纳,获得20
12秒前
Rou完成签到 ,获得积分10
12秒前
Prehye发布了新的文献求助10
13秒前
qq完成签到 ,获得积分10
13秒前
13秒前
bo完成签到,获得积分10
16秒前
土豪的摩托完成签到 ,获得积分10
16秒前
慕青应助醉生梦死采纳,获得10
17秒前
洁净的文涛完成签到,获得积分10
19秒前
19秒前
liyang发布了新的文献求助20
20秒前
XCL完成签到,获得积分10
20秒前
Prehye完成签到 ,获得积分10
20秒前
20秒前
czz完成签到,获得积分10
21秒前
丰饶之海完成签到 ,获得积分20
23秒前
Cynthia完成签到,获得积分10
23秒前
24秒前
量子星尘发布了新的文献求助10
25秒前
科研通AI2S应助XCL采纳,获得10
26秒前
充电宝应助科研通管家采纳,获得10
28秒前
脑洞疼应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
天天快乐应助爽o采纳,获得10
28秒前
慕青应助科研通管家采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
LaTeXer应助科研通管家采纳,获得150
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4914824
求助须知:如何正确求助?哪些是违规求助? 4189010
关于积分的说明 13009694
捐赠科研通 3957961
什么是DOI,文献DOI怎么找? 2170035
邀请新用户注册赠送积分活动 1188261
关于科研通互助平台的介绍 1095917