亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Use of smartphone sensors to quantify the productive cycle elements of hand fallers on industrial cable logging operations

滑动窗口协议 航程(航空) 加速度计 模拟 登录中 计算机科学 标准差 数据记录器 工作(物理) 实时计算 工程类 窗口(计算) 统计 数学 机械工程 生态学 生物 航空航天工程 操作系统
作者
Robert Keefe,Eloise G. Zimbelman,Ann M. Wempe
出处
期刊:International Journal of Forest Engineering [Taylor & Francis]
卷期号:30 (2): 132-143 被引量:21
标识
DOI:10.1080/14942119.2019.1572489
摘要

Analysis of time and motion study data is central to forest operations, but current methods used to study work cycles are limited in the breadth and depth of available predictor variables. The objective of this research was to evaluate whether activity recognition modeling based on smartphone sensor data could be used to quantify work tasks during motor-manual logging activities. Three productive cycle elements (travel, acquire, fell) and delays were manually timed while three hand fallers worked on industrial cable logging operations in North Idaho. Each faller carried a smartphone that recorded sensor data at 10 Hz using the AndroSensor mobile app. The random forests machine learning algorithm was used to classify cycle elements and delay from the device sensor measurements. Four time domain features (mean, standard deviation, interquartile range, and skewness) were extracted for each of four sensor values (acceleration, linear acceleration, gyroscope, and sound) using 10 sliding window sizes ranging from 1 to 10 seconds. For each window size, calculations were performed with and without gaps between subsequent cycle elements. Models with and without sound were compared. Overall model prediction accuracy ranged from 65.9% to 99.6% and accuracy increased as window size increased. The two calculation methods did not result in noticeable differences in prediction error, but the inclusion of sound decreased error in nearly all models. These results have demonstrated the feasibility of developing activity recognition models to quantify work based on mobile device sensors, which is an important step for advancing real-time analysis of productive cycle times.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuxu125678完成签到 ,获得积分10
4秒前
SciGPT应助2s采纳,获得10
4秒前
8秒前
lzhu发布了新的文献求助10
14秒前
卑微学术人完成签到 ,获得积分10
21秒前
浮游应助幸运小狗采纳,获得10
23秒前
浮游应助幸运小狗采纳,获得10
23秒前
24秒前
37秒前
为非常的好应助mmyhn采纳,获得10
40秒前
43秒前
人谷完成签到 ,获得积分10
46秒前
Lucas应助zzz采纳,获得10
51秒前
54秒前
浮游应助九月采纳,获得10
56秒前
浮游应助aa121599采纳,获得10
56秒前
彭栋发布了新的文献求助20
57秒前
人谷呀完成签到 ,获得积分10
1分钟前
唐泽雪穗应助科研通管家采纳,获得10
1分钟前
1分钟前
CRISPR完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI5应助佳佳采纳,获得10
1分钟前
Cnak发布了新的文献求助10
1分钟前
CRISPR发布了新的文献求助10
1分钟前
无花果应助Cnak采纳,获得10
1分钟前
1分钟前
1分钟前
Ketan发布了新的文献求助10
2分钟前
优雅愚志完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
追风少年发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
笨笨完成签到,获得积分10
2分钟前
烟花应助DYKNGIVDFY采纳,获得10
2分钟前
FashionBoy应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5077319
求助须知:如何正确求助?哪些是违规求助? 4296476
关于积分的说明 13387006
捐赠科研通 4118812
什么是DOI,文献DOI怎么找? 2255545
邀请新用户注册赠送积分活动 1259968
关于科研通互助平台的介绍 1193137