MOLI: multi-omics late integration with deep neural networks for drug response prediction

药物反应 计算机科学 代表(政治) 机器学习 人工智能 组学 精确肿瘤学 人工神经网络 计算生物学 数据挖掘 药品 精密医学 生物信息学 生物 政治 药理学 政治学 法学 遗传学
作者
Hossein Sharifi-Noghabi,Olga Zolotareva,Colin C. Collins,Martin Ester
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:35 (14): i501-i509 被引量:187
标识
DOI:10.1093/bioinformatics/btz318
摘要

Abstract Motivation Historically, gene expression has been shown to be the most informative data for drug response prediction. Recent evidence suggests that integrating additional omics can improve the prediction accuracy which raises the question of how to integrate the additional omics. Regardless of the integration strategy, clinical utility and translatability are crucial. Thus, we reasoned a multi-omics approach combined with clinical datasets would improve drug response prediction and clinical relevance. Results We propose MOLI, a multi-omics late integration method based on deep neural networks. MOLI takes somatic mutation, copy number aberration and gene expression data as input, and integrates them for drug response prediction. MOLI uses type-specific encoding sub-networks to learn features for each omics type, concatenates them into one representation and optimizes this representation via a combined cost function consisting of a triplet loss and a binary cross-entropy loss. The former makes the representations of responder samples more similar to each other and different from the non-responders, and the latter makes this representation predictive of the response values. We validate MOLI on in vitro and in vivo datasets for five chemotherapy agents and two targeted therapeutics. Compared to state-of-the-art single-omics and early integration multi-omics methods, MOLI achieves higher prediction accuracy in external validations. Moreover, a significant improvement in MOLI’s performance is observed for targeted drugs when training on a pan-drug input, i.e. using all the drugs with the same target compared to training only on drug-specific inputs. MOLI’s high predictive power suggests it may have utility in precision oncology. Availability and implementation https://github.com/hosseinshn/MOLI. Supplementary information Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小林完成签到,获得积分10
1秒前
Kashing完成签到,获得积分10
1秒前
droke发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
研友_VZG7GZ应助忧心的富采纳,获得10
4秒前
6秒前
肝胆外科医生完成签到,获得积分10
7秒前
可爱萨摩耶完成签到,获得积分10
7秒前
Jojo发布了新的文献求助10
8秒前
9秒前
codwest发布了新的文献求助10
10秒前
10秒前
Yuchaoo完成签到,获得积分10
11秒前
Yuchaoo发布了新的文献求助10
13秒前
14秒前
梓安发布了新的文献求助10
14秒前
英俊的铭应助忧郁的鱿鱼采纳,获得10
15秒前
JamesPei应助陶醉的纲采纳,获得10
16秒前
16秒前
华仔应助求带采纳,获得10
17秒前
codwest完成签到,获得积分10
17秒前
嘿嘿江完成签到 ,获得积分10
18秒前
虬江学者发布了新的文献求助10
18秒前
Jojo完成签到,获得积分10
19秒前
19秒前
22秒前
22秒前
24秒前
小董要努力完成签到,获得积分20
24秒前
梁敏发布了新的文献求助10
25秒前
竹車应助啾一口香菜采纳,获得10
27秒前
无辜鸭子发布了新的文献求助10
28秒前
30秒前
无花果应助momo采纳,获得10
31秒前
打打应助罗威椒采纳,获得10
31秒前
wzhang完成签到,获得积分10
32秒前
尼古丁真应助东篱采纳,获得10
34秒前
liuliu发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4466587
求助须知:如何正确求助?哪些是违规求助? 3928227
关于积分的说明 12189884
捐赠科研通 3581500
什么是DOI,文献DOI怎么找? 1968066
邀请新用户注册赠送积分活动 1006501
科研通“疑难数据库(出版商)”最低求助积分说明 900650