量子点
光伏
异质结
钙钛矿(结构)
光伏系统
材料科学
光电子学
图层(电子)
半导体
卤化物
光活性层
薄膜
太阳能电池
纳米技术
化学
聚合物太阳能电池
化学工程
无机化学
工程类
生物
生态学
作者
Qian Zhao,Abhijit Hazarika,Xihan Chen,Steve Harvey,Bryon W. Larson,Glenn Teeter,Jun Liu,Tao Song,Chuanxiao Xiao,Liam Shaw,Minghui Zhang,Guoran Li,Matthew C. Beard,Joseph M. Luther
标识
DOI:10.1038/s41467-019-10856-z
摘要
Abstract Metal halide perovskite semiconductors possess outstanding characteristics for optoelectronic applications including but not limited to photovoltaics. Low-dimensional and nanostructured motifs impart added functionality which can be exploited further. Moreover, wider cation composition tunability and tunable surface ligand properties of colloidal quantum dot (QD) perovskites now enable unprecedented device architectures which differ from thin-film perovskites fabricated from solvated molecular precursors. Here, using layer-by-layer deposition of perovskite QDs, we demonstrate solar cells with abrupt compositional changes throughout the perovskite film. We utilize this ability to abruptly control composition to create an internal heterojunction that facilitates charge separation at the internal interface leading to improved photocarrier harvesting. We show how the photovoltaic performance depends upon the heterojunction position, as well as the composition of each component, and we describe an architecture that greatly improves the performance of perovskite QD photovoltaics.
科研通智能强力驱动
Strongly Powered by AbleSci AI