Coronary CT Angiography–derived Fractional Flow Reserve

部分流量储备 医学 冠状动脉疾病 计算机断层血管造影 放射科 计算机辅助设计 血管造影 冠状动脉造影 诊断准确性 心脏病学 心肌梗塞 工程类 工程制图
作者
Christian Tesche,Carlo N. De Cecco,Moritz H. Albrecht,Taylor M. Duguay,Richard R. Bayer,Sheldon E. Litwin,Daniel Steinberg,U. Joseph Schoepf
出处
期刊:Radiology [Radiological Society of North America]
卷期号:285 (1): 17-33 被引量:150
标识
DOI:10.1148/radiol.2017162641
摘要

Invasive coronary angiography (ICA) with measurement of fractional flow reserve (FFR) by means of a pressure wire technique is the established reference standard for the functional assessment of coronary artery disease (CAD) ( 1 , 2 ). Coronary computed tomographic (CT) angiography has emerged as a noninvasive method for direct assessment of CAD and plaque characterization with high diagnostic accuracy compared with ICA ( 3 , 4 ). However, the solely anatomic assessment provided with both coronary CT angiography and ICA has poor discriminatory power for ischemia-inducing lesions. FFR derived from standard coronary CT angiography (FFRCT) data sets by using any of several advanced computational analytic approaches enables combined anatomic and hemodynamic assessment of a coronary lesion by a single noninvasive test. Current technical approaches to the calculation of FFRCT include algorithms based on full- and reduced-order computational fluid dynamic modeling, as well as artificial intelligence deep machine learning ( 5 , 6 ). A growing body of evidence has validated the diagnostic accuracy of FFRCT techniques compared with invasive FFR. Improved therapeutic guidance has been demonstrated, showing the potential of FFRCT to streamline and rationalize the care of patients suspected of having CAD and improve outcomes while reducing overall health care costs ( 7 , 8 ). The purpose of this review is to describe the scientific principles, clinical validation, and implementation of various FFRCT approaches, their precursors, and related imaging tests. © RSNA, 2017.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wadaxiwa完成签到,获得积分10
刚刚
wF发布了新的文献求助10
刚刚
1秒前
飘逸踏歌完成签到,获得积分0
1秒前
周萌博完成签到,获得积分20
2秒前
tim发布了新的文献求助10
2秒前
就是我完成签到,获得积分10
2秒前
2秒前
2秒前
许甜甜鸭应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
冰魂应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
cheetollly完成签到,获得积分10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
难过板栗应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
随机昵称都挺非的哈完成签到,获得积分10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
夏硕士应助科研通管家采纳,获得10
4秒前
4秒前
海聪天宇完成签到,获得积分10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
叮叮爱吃糖完成签到,获得积分10
4秒前
5秒前
图图完成签到,获得积分10
5秒前
5秒前
跳跃的含双完成签到,获得积分20
5秒前
烟花应助longwang采纳,获得10
5秒前
充电宝应助权灵萱采纳,获得10
6秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Single Element Semiconductors: Properties and Devices 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
New digital musical instruments : control and interaction beyond the keyboard 200
English language teaching materials : theory and practice 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835562
求助须知:如何正确求助?哪些是违规求助? 3377932
关于积分的说明 10501197
捐赠科研通 3097494
什么是DOI,文献DOI怎么找? 1705854
邀请新用户注册赠送积分活动 820756
科研通“疑难数据库(出版商)”最低求助积分说明 772221