Identifying highly influential nodes in the complicated grief network.

中心性 心理学 节点(物理) 心理信息 联想(心理学) 卡茨中心性 精神病理学 中间性中心性 临床心理学 数学 心理治疗师 梅德林 工程类 统计 结构工程 法学 政治学
作者
Donald J. Robinaugh,Alexander J. Millner,Richard J. McNally
出处
期刊:Journal of Abnormal Psychology [American Psychological Association]
卷期号:125 (6): 747-757 被引量:1159
标识
DOI:10.1037/abn0000181
摘要

The network approach to psychopathology conceptualizes mental disorders as networks of mutually reinforcing nodes (i.e., symptoms). Researchers adopting this approach have suggested that network topology can be used to identify influential nodes, with nodes central to the network having the greatest influence on the development and maintenance of the disorder. However, because commonly used centrality indices do not distinguish between positive and negative edges, they may not adequately assess the nature and strength of a node's influence within the network. To address this limitation, we developed 2 indices of a node's expected influence (EI) that account for the presence of negative edges. To evaluate centrality and EI indices, we simulated single-node interventions on randomly generated networks. In networks with exclusively positive edges, centrality and EI were both strongly associated with observed node influence. In networks with negative edges, EI was more strongly associated with observed influence than was centrality. We then used data from a longitudinal study of bereavement to examine the association between (a) a node's centrality and EI in the complicated grief (CG) network and (b) the strength of association between change in that node and change in the remainder of the CG network from 6- to 18-months postloss. Centrality and EI were both correlated with the strength of the association between node change and network change. Together, these findings suggest high-EI nodes, such as emotional pain and feelings of emptiness, may be especially important to the etiology and treatment of CG. (PsycINFO Database Record
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晨曦完成签到,获得积分10
刚刚
刚刚
狗小是的念着倒给狗小是的念着倒的求助进行了留言
1秒前
llw发布了新的文献求助10
1秒前
布蓝图完成签到 ,获得积分10
1秒前
Joy应助勤奋旭尧采纳,获得10
2秒前
芸苔AA完成签到,获得积分10
2秒前
2秒前
ray完成签到 ,获得积分10
2秒前
2秒前
崔正成关注了科研通微信公众号
3秒前
wenwen发布了新的文献求助10
3秒前
田様应助pkaq采纳,获得10
4秒前
yy123发布了新的文献求助10
4秒前
4秒前
星河发布了新的文献求助10
5秒前
沉淀体育生完成签到,获得积分10
5秒前
5秒前
NexusExplorer应助wfd采纳,获得10
5秒前
orixero应助Miraitowa采纳,获得10
6秒前
7秒前
糟糕的万恶应助吴之琳采纳,获得10
7秒前
7秒前
ray发布了新的文献求助10
8秒前
Novermber发布了新的文献求助10
8秒前
彭于晏应助飞快的访枫采纳,获得10
9秒前
养条狗吧发布了新的文献求助10
9秒前
10秒前
宋尔丝发布了新的文献求助10
11秒前
yellow完成签到,获得积分10
12秒前
13秒前
曾无忧发布了新的文献求助10
13秒前
Ting完成签到,获得积分10
13秒前
xing发布了新的文献求助10
13秒前
自闭怪发布了新的文献求助10
14秒前
隐形曼青应助鹊起惊梦采纳,获得10
14秒前
14秒前
星河完成签到,获得积分10
14秒前
15秒前
哈哈完成签到 ,获得积分10
16秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 840
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Logical form: From GB to Minimalism 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4188023
求助须知:如何正确求助?哪些是违规求助? 3723948
关于积分的说明 11733830
捐赠科研通 3401286
什么是DOI,文献DOI怎么找? 1866474
邀请新用户注册赠送积分活动 923309
科研通“疑难数据库(出版商)”最低求助积分说明 834445