Characterization of Iron-Nickel Alloy Nanoparticles for the Oxygen Evolution Reaction As a Function of Iron-Nickel Composition

双金属片 催化作用 过电位 氢氧化物 材料科学 无机化学 化学工程 合金 化学 冶金 电化学 电极 有机化学 物理化学 工程类
作者
Prashant Acharya,Zachary Nelson,Lauren F. Greenlee
出处
期刊:Meeting abstracts 卷期号:MA2017-02 (21): 1003-1003
标识
DOI:10.1149/ma2017-02/21/1003
摘要

Iron-doped nickel hydroxide catalysts are now recognized as the leading catalyst composition for alkaline electrochemical water splitting, and in particular, the anodic reaction of oxygen evolution [1]. The iron-nickel bimetallic composition of these hydroxide catalysts has been demonstrated to be critical for optimal catalyst performance [2]. However, few studies thus far have investigated if the same trend in catalyst activity is observed when catalyst morphology is scaled from bulk films to the nanoscale [3], where the overall field of iron-nickel hydroxide/oxide catalysts is in its infancy in terms of developing, synthesizing, and fully characterizing these nanoparticulate bimetallic hydroxides. Further, preliminary stability studies performed on iron-nickel [4] and iron-cobalt [5] thin films suggests that an evaluation of the stability of the bimetallic catalysts as a function of composition will be critical to identifying the best-performing catalyst compositions to pursue. In particular, Burke et al. report that while iron atomic compositions of less than 54 % resulted in high catalytic activities, the activities of these iron-cobalt bimetallic catalysts decreased by up to 62 % over two hours [5]. In the iron-nickel catalyst field, little work has evaluated how catalyst stability is affected by bimetallic composition in either thin film or nanocatalyst morphologies. Thus far, most studies have primarily focused on how the iron-nickel bimetallic composition affects catalyst performance from the perspective of lowering the overpotential, thereby lowering the kinetic limitation to the oxygen evolution reaction [2, 6]. In this talk, our ongoing work to develop and characterize a suite of bimetallic iron-nickel alloy hydroxide nanoparticle catalysts for the oxygen evolution reaction will be discussed. In particular, results will be presented for three iron-nickel compositions (1:5, 1:1, and 5:1 mol:mol Fe:Ni) and trends in both overpotential and stability will be discussed. Nanoparticle characterization via high resolution transmission electron microscopy, elemental analysis, and synchrotron-based x-ray absorption spectroscopy will be presented and discussed as a function of bimetallic composition. The role of nanoparticle structure in controlling activity and stability will be discussed, and electrochemical performance data will be used to demonstrate that both activity (i.e., overpotential) and stability (i.e., degradation rate as mV/hr) are critical to evaluate as we develop these catalysts for water splitting. References [1] D. Friebel, M.W. Louie, M. Bajdich, K.E. Sanwald, Y. Cai, A.M. Wise, M.-J. Cheng, D. Sokaras, T.-C. Weng, R. Alonso, R.C. Davis, J.R. Bargar, J.K. Norskov, A. Nilsson, A.T. Bell, Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting, J. Am. Chem. Soc., 137 (2015) 1305–1313. [2] L. Trotochaud, S.L. Young, J.K. Ranney, S.W. Boettcher, Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation, J. Am. Chem. Soc., 136 (2014) 6744-6753. [3] J.A. Bau, E.J. Luber, J.M. Buriak, Oxygen Evolution Catalyzed by Nickel–Iron Oxide Nanocrystals with a Nonequilibrium Phase, ACS Applied Materials & Interfaces, 7 (2015) 19755-19763. [4] M. Gong, Y. Li, H. Wang, Y. Liang, J.Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai, An Advanced Ni–Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation, Journal of the American Chemical Society, 135 (2013) 8452-8455. [5] M.S. Burke, M.G. Kast, L. Trotochaud, A.M. Smith, S.W. Boettcher, Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism, J. Am. Chem. Soc., 137 (2015) 3638-3648. [6] M.W. Louie, A.T. Bell, An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen, J. Am. Chem. Soc., 135 (2013) 12329-12337.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不是大闸蟹x完成签到,获得积分10
刚刚
江洋大盗发布了新的文献求助10
1秒前
1秒前
科研通AI5应助沉默的幻枫采纳,获得10
2秒前
yf完成签到 ,获得积分10
2秒前
菠萝披萨完成签到,获得积分10
2秒前
领导范儿应助舒适路人采纳,获得10
3秒前
嗯嗯我很好真的完成签到,获得积分10
3秒前
Orange应助Camellia采纳,获得10
3秒前
哇samm完成签到,获得积分10
4秒前
LAlalal完成签到,获得积分10
5秒前
冰魂应助jinjun采纳,获得10
5秒前
7秒前
炸疼发布了新的文献求助10
8秒前
害怕导师的小可怜完成签到,获得积分10
9秒前
领导范儿应助彩色难摧采纳,获得10
9秒前
11秒前
林也行发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
13秒前
研友_V8Qmr8完成签到,获得积分10
14秒前
14秒前
沉默的幻枫完成签到,获得积分10
15秒前
15秒前
福宝发布了新的文献求助10
16秒前
曹振宇发布了新的文献求助10
17秒前
小张发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
18秒前
wcf发布了新的文献求助10
18秒前
LYW发布了新的文献求助20
18秒前
JamesPei应助顺毕采纳,获得10
20秒前
花花猪1989发布了新的文献求助150
21秒前
23秒前
乐乐应助荡秋千的猴子采纳,获得10
24秒前
小二郎应助lizhiqian2024采纳,获得10
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784451
求助须知:如何正确求助?哪些是违规求助? 3329582
关于积分的说明 10242685
捐赠科研通 3044992
什么是DOI,文献DOI怎么找? 1671561
邀请新用户注册赠送积分活动 800396
科研通“疑难数据库(出版商)”最低求助积分说明 759391