亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LightGBM: an efficient and accurate method for predicting pregnancy diseases

医学 怀孕 机器学习 逻辑回归 人工智能 决策树 梯度升压 Boosting(机器学习) 产科 随机森林 计算机科学 遗传学 生物
作者
Hualong Liao,Xinyuan Zhang,Can Zhao,Yu Chen,Xiaoxi Zeng,Huafeng Li
出处
期刊:Journal of Obstetrics and Gynaecology [Informa]
卷期号:42 (4): 620-629 被引量:24
标识
DOI:10.1080/01443615.2021.1945006
摘要

As machine learning is becoming the fashion in disease prediction while no prediction model has performed very efficiently and accurately on predicting pregnancy diseases up to now, it's necessary to compare several common machine learning methods' performance on pregnancy diseases prediction and select out the best one. The data of two common pregnancy complications, pregnancy-induced hypertension (PIH) and Intrahepatic cholestasis of pregnancy (ICP), based on various maternal characteristics measured in patients' routine blood examination in 10-19 weeks of gestation are considered to be suitable to be learned. This is a retrospective study of 320 healthy pregnancies in 10-19 weeks, with 149 patients who subsequently developed PIH and 250 patients who subsequently developed ICP. Nine machine learning methods were used to predict PIH and ICP and their performance was compared via 8 evaluation indexes. Finally, the light Gradient Boosting Machine (lightGBM) is considered to be the best method to predict gestational diseases.Impact statementWhat is already known on this subject? As a kind of commonly used method in disease prediction, machine learning could be applied to clinical data for developing robust risk models and many achievements have been made. Also, machine learning can be used to predict pregnancy diseases. Although some machine learning methods have been used for screening gestational diseases, methods based on simple theories, such as logistic regression and decision tree, are frequently used. They don't always have a very satisfactory prediction results. Besides, only a few types of pregnancy diseases can be predicted.What do the results of this study add? LightGBM has the best prediction results of PIH and ICP among 9 machine learning methods in this study. It can predict PIH (AUC = 81.72%) with a sensitivity of 70.59%, and ICP (AUC = 95.91%) with a sensitivity of 97.91%.What are the implications of these findings for clinical practice and/or further research? A new model has been developed for effective first-trimester screening for two common pregnancy diseases, PIH and ICP. This lightGBM model can be used in relative hospitals and population of the research, and provide references for doctors' diagnosis and treatment of pregnant women. In further research, the predicted effect of lightGBM on daily practice and other pregnancy diseases such as pregnancy diabetes, will be verified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默完成签到 ,获得积分10
10秒前
22秒前
HS发布了新的文献求助10
29秒前
30秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
星辰大海应助科研通管家采纳,获得10
37秒前
量子星尘发布了新的文献求助10
1分钟前
扑灯的飞蛾完成签到,获得积分10
1分钟前
yy发布了新的文献求助10
1分钟前
siv完成签到,获得积分10
1分钟前
Owen应助yy采纳,获得10
1分钟前
Chocolate001完成签到,获得积分20
1分钟前
Chocolate001发布了新的文献求助10
1分钟前
遗忘完成签到,获得积分10
1分钟前
莓啤汽完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
fei完成签到,获得积分10
2分钟前
慕青应助斯文傲芙采纳,获得10
2分钟前
2分钟前
斯文傲芙发布了新的文献求助10
2分钟前
默默关注了科研通微信公众号
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
Aprilapple发布了新的文献求助10
2分钟前
mariajor发布了新的文献求助10
3分钟前
斯文傲芙完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
冒险寻羊完成签到,获得积分10
3分钟前
CipherSage应助Aprilapple采纳,获得10
3分钟前
Aprilapple发布了新的文献求助10
4分钟前
Lucas应助Aprilapple采纳,获得10
4分钟前
TongKY完成签到 ,获得积分10
4分钟前
4分钟前
Lucas应助夏天呀采纳,获得10
5分钟前
muhum完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
我是老大应助夏天呀采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4316803
求助须知:如何正确求助?哪些是违规求助? 3835135
关于积分的说明 11994925
捐赠科研通 3475369
什么是DOI,文献DOI怎么找? 1906284
邀请新用户注册赠送积分活动 952361
科研通“疑难数据库(出版商)”最低求助积分说明 853854