LightGBM: an efficient and accurate method for predicting pregnancy diseases

医学 怀孕 机器学习 逻辑回归 人工智能 决策树 梯度升压 Boosting(机器学习) 产科 随机森林 计算机科学 遗传学 生物
作者
Hualong Liao,Xinyuan Zhang,Can Zhao,Yu Chen,Xiaoxi Zeng,Huafeng Li
出处
期刊:Journal of Obstetrics and Gynaecology [Informa]
卷期号:42 (4): 620-629 被引量:31
标识
DOI:10.1080/01443615.2021.1945006
摘要

As machine learning is becoming the fashion in disease prediction while no prediction model has performed very efficiently and accurately on predicting pregnancy diseases up to now, it's necessary to compare several common machine learning methods' performance on pregnancy diseases prediction and select out the best one. The data of two common pregnancy complications, pregnancy-induced hypertension (PIH) and Intrahepatic cholestasis of pregnancy (ICP), based on various maternal characteristics measured in patients' routine blood examination in 10-19 weeks of gestation are considered to be suitable to be learned. This is a retrospective study of 320 healthy pregnancies in 10-19 weeks, with 149 patients who subsequently developed PIH and 250 patients who subsequently developed ICP. Nine machine learning methods were used to predict PIH and ICP and their performance was compared via 8 evaluation indexes. Finally, the light Gradient Boosting Machine (lightGBM) is considered to be the best method to predict gestational diseases.Impact statementWhat is already known on this subject? As a kind of commonly used method in disease prediction, machine learning could be applied to clinical data for developing robust risk models and many achievements have been made. Also, machine learning can be used to predict pregnancy diseases. Although some machine learning methods have been used for screening gestational diseases, methods based on simple theories, such as logistic regression and decision tree, are frequently used. They don't always have a very satisfactory prediction results. Besides, only a few types of pregnancy diseases can be predicted.What do the results of this study add? LightGBM has the best prediction results of PIH and ICP among 9 machine learning methods in this study. It can predict PIH (AUC = 81.72%) with a sensitivity of 70.59%, and ICP (AUC = 95.91%) with a sensitivity of 97.91%.What are the implications of these findings for clinical practice and/or further research? A new model has been developed for effective first-trimester screening for two common pregnancy diseases, PIH and ICP. This lightGBM model can be used in relative hospitals and population of the research, and provide references for doctors' diagnosis and treatment of pregnant women. In further research, the predicted effect of lightGBM on daily practice and other pregnancy diseases such as pregnancy diabetes, will be verified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
笑点低歌曲完成签到,获得积分10
刚刚
1秒前
1秒前
肥猫发布了新的文献求助10
1秒前
dmyy313235发布了新的文献求助10
2秒前
Yozzi完成签到,获得积分10
2秒前
静水流深完成签到,获得积分10
2秒前
机智的嘻嘻完成签到 ,获得积分10
3秒前
小巴完成签到,获得积分10
3秒前
hunter完成签到,获得积分10
3秒前
啊呸噼里啪啦完成签到,获得积分10
4秒前
4秒前
34完成签到,获得积分10
4秒前
Owen应助英俊溪灵采纳,获得10
5秒前
啊哈完成签到,获得积分10
5秒前
暖风发布了新的文献求助10
5秒前
5秒前
香蕉觅云应助OSASACB采纳,获得10
5秒前
6秒前
无极微光应助白桃味的夏采纳,获得20
6秒前
小猴儿发布了新的文献求助20
8秒前
8秒前
爆米花应助糖布里部采纳,获得10
9秒前
Glorious完成签到,获得积分10
9秒前
9秒前
Qlmj发布了新的文献求助10
10秒前
Smurfs完成签到 ,获得积分20
10秒前
10秒前
烟花应助昏睡的绿海采纳,获得10
10秒前
ssssssu完成签到,获得积分10
11秒前
带翅膀的三文鱼完成签到,获得积分10
11秒前
11秒前
cs发布了新的文献求助10
11秒前
微笑主宰完成签到,获得积分10
12秒前
秋天发布了新的文献求助10
12秒前
天文甄完成签到,获得积分10
12秒前
12秒前
汉堡包应助温杨杨采纳,获得10
12秒前
科研通AI5应助超帅远望采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5000907
求助须知:如何正确求助?哪些是违规求助? 4246114
关于积分的说明 13228378
捐赠科研通 4044634
什么是DOI,文献DOI怎么找? 2212800
邀请新用户注册赠送积分活动 1222943
关于科研通互助平台的介绍 1143240