Comparative study of feature extraction and classification based on dispersion Lempel‐Ziv complexity

特征提取 模式识别(心理学) 计算机科学 k-最近邻算法 人工智能 熵(时间箭头) 特征(语言学) 近似熵 语言学 量子力学 物理 哲学
作者
Shangbin Jiao,Bo Geng,Yuxing Li,Qing Zhang,Qing Wang,Yujun Li,Wenqing Wang
出处
期刊:International Journal of Numerical Modelling-electronic Networks Devices and Fields [Wiley]
卷期号:35 (2) 被引量:9
标识
DOI:10.1002/jnm.2949
摘要

Abstract As an important complexity feature of signal, Lempel‐Ziv complexity (LZC) has the advantage of simple‐to‐calculate, but it ignores amplitude information, and has low sensitivity at low amplitude. Dispersion Lempel‐Ziv complexity (DLZC) is a recently proposed nonlinear dynamic method, it has the advantage of immunity to noise even at relatively large proportion of noise and has been used to describe different pathological states. In view of its good performance in the field of biomedicine, we introduce DLZC into the field of underwater acoustic and fault diagnosis, and propose a feature extraction method for ship and gear fault signals based on DLZC, then an intelligent classification method was proposed by combining DLZC with K‐Nearest Neighbor (KNN) to further verify the effectiveness of the proposed feature extraction method, termed DLZC‐KNN. We conducted comparative experiments on feature extraction and classification, respectively: for the feature extraction comparison experiment, we compared the proposed feature extraction method with other feature extraction methods, which are based on Lempel‐Ziv complexity (LZC), permutation entropy (PE), dispersion entropy (DE), and fluctuation‐based dispersion entropy (FDE); for the classification comparison experiment, we compare the impact of different features and different classifiers on the recognition rate and also discussed the influence of different parameters on the experiment. The results show that DLZC has a better representation of signal complexity, and the DLZC‐KNN classification method gets a higher recognition rate than other comparative methods both in the field of fault diagnosis and underwater acoustic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
wj完成签到,获得积分10
1秒前
快乐小行星完成签到,获得积分10
1秒前
5秒前
可爱的函函应助xiaogua采纳,获得10
5秒前
7秒前
慕青应助KKK采纳,获得10
8秒前
啊啊啊啊啊啊啊完成签到,获得积分20
9秒前
9秒前
ocean关注了科研通微信公众号
9秒前
将个烂就完成签到,获得积分20
10秒前
Aaron完成签到 ,获得积分10
10秒前
刘大米发布了新的文献求助10
14秒前
15秒前
我是老大应助干净白容采纳,获得10
16秒前
17秒前
18秒前
18秒前
Master_Ye完成签到,获得积分10
19秒前
19秒前
木木木完成签到,获得积分10
20秒前
DianaRang发布了新的文献求助10
20秒前
科研通AI6应助在不在不在采纳,获得10
21秒前
量子星尘发布了新的文献求助10
22秒前
hkh发布了新的文献求助10
24秒前
dione发布了新的文献求助30
25秒前
肉丸完成签到 ,获得积分10
25秒前
浮游应助老的火龙果采纳,获得10
27秒前
OeO完成签到 ,获得积分10
27秒前
Joseph完成签到,获得积分10
27秒前
28秒前
失眠呆呆鱼完成签到 ,获得积分10
29秒前
29秒前
大个应助啊啊啊啊啊啊啊采纳,获得10
30秒前
Lucas应助研友_LjbjzL采纳,获得10
31秒前
陈仁宇应助zbr采纳,获得20
32秒前
佟鹭其发布了新的文献求助80
32秒前
量子星尘发布了新的文献求助10
33秒前
LK完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5011838
求助须知:如何正确求助?哪些是违规求助? 4253162
关于积分的说明 13253185
捐赠科研通 4055874
什么是DOI,文献DOI怎么找? 2218424
邀请新用户注册赠送积分活动 1228027
关于科研通互助平台的介绍 1150278