Semi-Supervised Deep Transfer Learning for Benign-Malignant Diagnosis of Pulmonary Nodules in Chest CT Images

人工智能 计算机科学 恶性肿瘤 深度学习 肺癌 肺孤立结节 模式识别(心理学) 放射科 学习迁移 医学 结核(地质) 计算机断层摄影术 病理 内科学 生物 古生物学
作者
Feng Shi,Bojiang Chen,Qiqi Cao,Ying Wei,Qing Zhou,Rui Zhang,Yaojie Zhou,Wenjie Yang,Xiang Wang,Rongrong Fan,Fan Yang,Yanbo Chen,Weimin Li,Yaozong Gao,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (4): 771-781 被引量:59
标识
DOI:10.1109/tmi.2021.3123572
摘要

Lung cancer is the leading cause of cancer deaths worldwide. Accurately diagnosing the malignancy of suspected lung nodules is of paramount clinical importance. However, to date, the pathologically-proven lung nodule dataset is largely limited and is highly imbalanced in benign and malignant distributions. In this study, we proposed a Semi-supervised Deep Transfer Learning (SDTL) framework for benign-malignant pulmonary nodule diagnosis. First, we utilize a transfer learning strategy by adopting a pre-trained classification network that is used to differentiate pulmonary nodules from nodule-like tissues. Second, since the size of samples with pathological-proven is small, an iterated feature-matching-based semi-supervised method is proposed to take advantage of a large available dataset with no pathological results. Specifically, a similarity metric function is adopted in the network semantic representation space for gradually including a small subset of samples with no pathological results to iteratively optimize the classification network. In this study, a total of 3,038 pulmonary nodules (from 2,853 subjects) with pathologically-proven benign or malignant labels and 14,735 unlabeled nodules (from 4,391 subjects) were retrospectively collected. Experimental results demonstrate that our proposed SDTL framework achieves superior diagnosis performance, with accuracy = 88.3%, AUC = 91.0% in the main dataset, and accuracy = 74.5%, AUC = 79.5% in the independent testing dataset. Furthermore, ablation study shows that the use of transfer learning provides 2% accuracy improvement, and the use of semi-supervised learning further contributes 2.9% accuracy improvement. Results implicate that our proposed classification network could provide an effective diagnostic tool for suspected lung nodules, and might have a promising application in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小满完成签到,获得积分10
2秒前
2024011023完成签到,获得积分10
2秒前
快乐小菜瓜完成签到 ,获得积分10
2秒前
爱吃肥牛完成签到,获得积分10
2秒前
墨羽翔天发布了新的文献求助10
2秒前
fxy发布了新的文献求助10
3秒前
3秒前
哇哈哈哈哈完成签到 ,获得积分10
4秒前
科研通AI6应助滴滴滴采纳,获得10
4秒前
Profeto应助HEISITATION采纳,获得10
4秒前
活泼白山完成签到 ,获得积分10
4秒前
Kiling完成签到 ,获得积分10
4秒前
fan520发布了新的文献求助50
4秒前
WillianLinnn完成签到,获得积分10
5秒前
山丘完成签到,获得积分10
6秒前
豆豆完成签到,获得积分20
6秒前
6秒前
科研牛马完成签到,获得积分10
7秒前
Ya完成签到,获得积分10
7秒前
8秒前
偷得浮生半日闲完成签到,获得积分10
8秒前
liugm完成签到,获得积分10
8秒前
Jasper应助zzz采纳,获得10
8秒前
米九完成签到 ,获得积分10
8秒前
科研通AI6应助77采纳,获得10
9秒前
小二郎应助LiXF采纳,获得10
9秒前
awrawsaf完成签到 ,获得积分10
9秒前
漂泊1991发布了新的文献求助10
9秒前
10秒前
大意的安白完成签到,获得积分10
10秒前
11秒前
林林完成签到 ,获得积分10
11秒前
沉默的友安完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
Sam十九完成签到,获得积分10
11秒前
七友完成签到,获得积分10
12秒前
小丸子完成签到,获得积分10
12秒前
Ricardo完成签到,获得积分10
12秒前
Ada完成签到 ,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952537
求助须知:如何正确求助?哪些是违规求助? 4215284
关于积分的说明 13112545
捐赠科研通 3997347
什么是DOI,文献DOI怎么找? 2187846
邀请新用户注册赠送积分活动 1203008
关于科研通互助平台的介绍 1115830