Innovation Efficiency Evaluation Based on a Two-Stage DEA Model With Shared-Input: A Case of Patent-Intensive Industry in China

数据包络分析 过程(计算) 中国 产业组织 索引(排版) 工作(物理) 业务 制造业 计算机科学 知识管理 营销 工程类 数学 机械工程 万维网 政治学 法学 操作系统 数学优化
作者
Wang Xiao-li,Yun Liu,Lingdi Chen
出处
期刊:IEEE Transactions on Engineering Management [Institute of Electrical and Electronics Engineers]
卷期号:70 (5): 1808-1822 被引量:33
标识
DOI:10.1109/tem.2021.3068989
摘要

The patent-intensive industries play a leading and exemplary role in innovation driven, it is crucial to research evaluation methods to draw their levels and difference of innovation efficiency. This article proposes a new definition method for the patent-intensive industry with the ratio of inventions in force and research and development (R&D) personnel's full-time equivalent, divides the innovation process into technology R&D stage and scientific & technological (S&T) achievement transformation stage. The basic work includes three aspects: selecting the two-stage data envelopment analysis model with shared-inputs as evaluation method by comparison with others; constructing evaluation index system by comprehensive analysis of previous researches and objective judgment; extracting evaluation data. It evaluates the innovation efficiency of patent-intensive industries, demonstrates the corresponding characteristics: 1) the overall level of innovation efficiency is not high; 2) the R&D capability is stronger than the transformation capability of S&T achievement; and 3) the industry with better overall innovation efficiency has better transformation capability. It also provides the targeted industrial policy suggestions by dividing the patent-intensive industries into four categories. The research result shows that the proposed method is suitable for the innovation efficiency evaluation for the patent-intensive industries, and its research framework could be applied to the evaluation of other industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
deletelzr完成签到,获得积分10
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
田様应助机智元霜采纳,获得10
2秒前
国色不染尘完成签到,获得积分10
2秒前
gmy完成签到,获得积分10
3秒前
3秒前
3秒前
田様应助zhang-leo采纳,获得10
4秒前
852应助AKAYI采纳,获得30
4秒前
英俊的铭应助小鱼采纳,获得10
5秒前
追逐完成签到 ,获得积分10
6秒前
慕青应助李联洪采纳,获得10
6秒前
科研老兵完成签到,获得积分10
7秒前
如瑶发布了新的文献求助10
7秒前
8秒前
momo发布了新的文献求助10
9秒前
9秒前
庆庆发布了新的文献求助10
9秒前
lsc应助JeanetteJin采纳,获得10
9秒前
习习完成签到 ,获得积分10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
小青椒应助科研通管家采纳,获得50
10秒前
puuuunido完成签到 ,获得积分10
10秒前
科研通AI6应助科研通管家采纳,获得30
11秒前
Tonson应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
852应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480459
求助须知:如何正确求助?哪些是违规求助? 4581574
关于积分的说明 14381235
捐赠科研通 4510152
什么是DOI,文献DOI怎么找? 2471660
邀请新用户注册赠送积分活动 1458083
关于科研通互助平台的介绍 1431812