DB-Net: A novel dilated CNN based multi-step forecasting model for power consumption in integrated local energy systems

功率消耗 计算机科学 能源消耗 功率(物理) 消费(社会学) 能量(信号处理) 电子工程 人工智能 工程类 电气工程 数学 社会科学 量子力学 统计 物理 社会学
作者
Noman Khan,Ijaz Ul Haq,Samee U. Khan,Seungmin Rho,Mi Young Lee,Sung Wook Baik
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier BV]
卷期号:133: 107023-107023 被引量:66
标识
DOI:10.1016/j.ijepes.2021.107023
摘要

• A Novel multi-step forecasting model for power consumption. • Dilated convolutional neural network and bidirectional LSTM based hybrid network model. • Deep learning based smart energy management for integrated local energy systems. • Comparative analysis of hybrid CNN and RNN models with traditional machine learning approaches. In the era of cutting edge technology, excessive demand for electricity is rising day by day, due to the exponential growth of population, electricity reliant vehicles, and home appliances. Precise energy consumption prediction (ECP) and integrated local energy systems (ILES) are critical to boost clean energy management systems between consumers and suppliers. Various obstacles such as environmental factors and occupant behavior affects the performance of existing approaches for long- and short-term ECP. Thus, to address such concerns, we present a novel hybrid network model ‘DB-Net’ by incorporating a dilated convolutional neural network (DCNN) with bidirectional long short-term memory (BiLSTM). The proposed approach allows efficient control of power energy in ILES between consumer and supplier when employed for long- and short-term ECP. The first phase combines data acquisition and refinement procedures into a preprocessing module in which the main goal is to optimize the collected data and to handle outliers. In the next phase, the refined data is passed into DCNN layers for feature encoding followed by BiLSTM layers to learn hidden sequential patterns and decode the feature maps. In the final phase, the DB-Net model forecasts multi-step power consumption (PC), including hourly, daily, weekly, and monthly output. The proposed approach attains better predictive performance than existing methods, thereby confirming its effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
zaqqq完成签到,获得积分10
2秒前
无奈的晴发布了新的文献求助10
3秒前
慕青应助sun采纳,获得10
5秒前
52pry发布了新的文献求助10
7秒前
脑洞疼应助keep采纳,获得30
8秒前
9秒前
22222应助DDDD采纳,获得30
9秒前
星辰大海应助沉梦志昂采纳,获得10
10秒前
无奈的晴完成签到,获得积分10
10秒前
晴朗发布了新的文献求助10
14秒前
马美丽完成签到 ,获得积分10
19秒前
萨尔莫斯发布了新的文献求助10
21秒前
烂漫夜梦完成签到 ,获得积分10
25秒前
yuji完成签到 ,获得积分10
26秒前
LK完成签到,获得积分10
27秒前
夏天就应该爬树完成签到,获得积分10
28秒前
ab君完成签到 ,获得积分10
29秒前
31秒前
华仔应助ibigbird采纳,获得10
32秒前
科研通AI5应助Sunday采纳,获得30
34秒前
35秒前
德国克大夫完成签到,获得积分10
36秒前
38秒前
38秒前
wenfeisun发布了新的文献求助10
38秒前
luyao970131发布了新的文献求助10
38秒前
pywangsmmu92完成签到,获得积分10
39秒前
喜悦完成签到,获得积分20
41秒前
42秒前
酷波er应助WhY采纳,获得10
44秒前
ibigbird发布了新的文献求助10
47秒前
沉默初雪完成签到 ,获得积分20
47秒前
平淡纸飞机完成签到 ,获得积分10
50秒前
科研通AI5应助oreo采纳,获得10
50秒前
ZZY完成签到,获得积分10
1分钟前
科研通AI5应助jinzheng采纳,获得10
1分钟前
1分钟前
扮猪吃饲料完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780272
求助须知:如何正确求助?哪些是违规求助? 3325576
关于积分的说明 10223619
捐赠科研通 3040740
什么是DOI,文献DOI怎么找? 1668987
邀请新用户注册赠送积分活动 798955
科研通“疑难数据库(出版商)”最低求助积分说明 758648