已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Adaptive neural network-based path tracking control for autonomous combine harvester with input saturation

控制理论(社会学) 计算机科学 跟踪(教育) 人工神经网络 控制工程 控制器(灌溉) 自适应控制 路径(计算) 控制(管理) 控制系统 非线性系统 弹道 跟踪误差 适应性 自适应系统
作者
Yuexin Zhang,Lihui Wang,Yaodong Liu
出处
期刊:Industrial Robot-an International Journal [Emerald Publishing Limited]
卷期号:48 (4): 510-522
标识
DOI:10.1108/ir-10-2020-0231
摘要

To reduce the effect of parameter uncertainties and input saturation on path tracking control for autonomous combine harvester, a path tracking controller is proposed, which integrates an adaptive neural network estimator and a saturation-aided system.,First, to analyze and compensate the influence of external factors, the vehicle model is established combining a dynamic model and a kinematic model. Meanwhile, to make the model simple, a comprehensive error is used, weighting heading error and position error simultaneously. Second, an adaptive neural network estimator is presented to calculate uncertain parameters which eventually improve the dynamic model. Then, the path tracking controller based on the improved dynamic model is designed by using the backstepping method, and its stability is proved by the Lyapunov theorem. Third, to mitigate round-trip operation of the actuator due to input saturation, a saturation-aided variable is presented during the control design process.,To verify the tracking accuracy and environmental adaptability of the proposed controller, numerical simulations are carried out under three different cases, and field experiments are performed in harvesting wheat and paddy. The experimental results demonstrate the tracking errors of the proposed controller that are reduced by more than 28% with contrast to the conventional controllers.,An adaptive neural network-based path tracking control is proposed, which considers both parameter uncertainties and input saturation. As far as we know, this is the first time a path tracking controller is specifically designed for the combine harvester with full consideration of working characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助友好诗蕾采纳,获得10
1秒前
王鑫完成签到,获得积分10
7秒前
827584450应助圈圈采纳,获得10
8秒前
9秒前
13秒前
15秒前
15秒前
共产主义接班人完成签到,获得积分10
17秒前
18秒前
友好诗蕾发布了新的文献求助10
18秒前
19秒前
fl发布了新的文献求助10
21秒前
lena发布了新的文献求助30
22秒前
一木张发布了新的文献求助10
23秒前
23秒前
丘比特应助漂亮寻云采纳,获得10
24秒前
Vintage发布了新的文献求助10
25秒前
科研通AI2S应助DDDD采纳,获得10
27秒前
Ava应助Q人士采纳,获得10
29秒前
lena完成签到,获得积分10
29秒前
HandsomeShaw完成签到,获得积分10
30秒前
23lk发布了新的文献求助10
30秒前
一木张完成签到,获得积分10
33秒前
YOUNG关注了科研通微信公众号
37秒前
xiaoguo完成签到,获得积分10
40秒前
42秒前
科研通AI5应助默默的鬼神采纳,获得10
46秒前
依克完成签到,获得积分10
47秒前
Q人士发布了新的文献求助10
47秒前
48秒前
50秒前
53秒前
脑洞疼应助科研通管家采纳,获得10
55秒前
小二郎应助科研通管家采纳,获得10
55秒前
小二郎应助科研通管家采纳,获得10
55秒前
科研通AI2S应助科研通管家采纳,获得10
55秒前
华仔应助科研通管家采纳,获得10
55秒前
充电宝应助科研通管家采纳,获得10
55秒前
zho应助科研通管家采纳,获得10
55秒前
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Technologies supporting mass customization of apparel: A pilot project 300
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780712
求助须知:如何正确求助?哪些是违规求助? 3326219
关于积分的说明 10226204
捐赠科研通 3041293
什么是DOI,文献DOI怎么找? 1669330
邀请新用户注册赠送积分活动 799040
科研通“疑难数据库(出版商)”最低求助积分说明 758723