Deep learning to replace, improve, or aid CFD analysis in built environment applications: A review

计算流体力学 计算机科学 气流 杠杆(统计) 人工智能 维数之咒 深度学习 人工神经网络 机器学习 模拟 机械工程 工程类 航空航天工程
作者
Giovanni Calzolari,Wei Liu
出处
期刊:Building and Environment [Elsevier BV]
卷期号:206: 108315-108315 被引量:170
标识
DOI:10.1016/j.buildenv.2021.108315
摘要

Fast and accurate airflow simulations in the built environment are critical to provide acceptable thermal comfort and air quality to the occupants. Computational Fluid Dynamics (CFD) offers detailed analysis on airflow motion, heat transfer, and contaminant transport in indoor environment, as well as wind flow and pollution dispersion around buildings in urban environments. However, CFD still faces many challenges mainly in terms of computational expensiveness and accuracy. With the increasing availability of large amount of data, data driven models are starting to be investigated to either replace, improve, or aid CFD simulations. More specifically, the abilities of deep learning and Artificial Neural Networks (ANN) as universal non-linear approximator, handling of high dimensionality fields, and computational inexpensiveness are very appealing. In built environment research, deep learning applications to airflow simulations shows the ANN as surrogate, replacement for expensive CFD analysis. Surrogate modeling enables fast or even real-time predictions, but usually at a cost of a degraded accuracy. The objective of this work is to critically review deep learning interactions with fluid mechanics simulations in general, to propose and inform about different techniques other than surrogate modeling for built environment applications. The literature review shows that ANNs can enhance the turbulence model in various way for coupled CFD simulations of higher accuracy, improve the efficiency of Proper Orthogonal Decomposition (POD) methods, leverage crucial physical properties and information with physics informed deep learning modeling, and even unlock new advanced methods for flow analysis such as super-resolution techniques. These promising methods are largely yet to be explored in the built environment scene. Unavoidably, deep learning models also presents challenges such as the availability of consistent large flow databases, the extrapolation task problem, and over-fitting, etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lanlan完成签到,获得积分10
5秒前
12秒前
26秒前
俊逸的盛男完成签到 ,获得积分10
42秒前
51秒前
Microgan完成签到,获得积分10
51秒前
桂花完成签到 ,获得积分10
52秒前
wuqi完成签到 ,获得积分10
53秒前
54秒前
Mark完成签到 ,获得积分10
57秒前
你要学好完成签到 ,获得积分10
57秒前
充电宝应助linmo采纳,获得10
1分钟前
devil_lei完成签到,获得积分10
1分钟前
susan完成签到 ,获得积分10
1分钟前
Vicktor2021完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
研友_Z119gZ完成签到 ,获得积分10
1分钟前
linmo发布了新的文献求助10
1分钟前
1分钟前
FashionBoy应助大有阳光采纳,获得10
1分钟前
zijingsy完成签到 ,获得积分10
1分钟前
ycool完成签到 ,获得积分10
1分钟前
孤鸿影98完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
大有阳光发布了新的文献求助10
2分钟前
滕皓轩发布了新的文献求助10
2分钟前
2分钟前
2分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
isedu完成签到,获得积分10
2分钟前
大有阳光完成签到,获得积分10
2分钟前
安详的曲奇完成签到,获得积分10
2分钟前
滕皓轩发布了新的文献求助10
2分钟前
白昼の月完成签到 ,获得积分0
2分钟前
仲乔妹完成签到,获得积分10
2分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798521
求助须知:如何正确求助?哪些是违规求助? 3344082
关于积分的说明 10318430
捐赠科研通 3060628
什么是DOI,文献DOI怎么找? 1679732
邀请新用户注册赠送积分活动 806761
科研通“疑难数据库(出版商)”最低求助积分说明 763353