Dual Convolutional Neural Networks for Breast Mass Segmentation and Diagnosis in Mammography

人工智能 计算机科学 卷积神经网络 分割 乳腺摄影术 深度学习 模式识别(心理学) 乳腺癌 图像分割 上下文图像分类 水准点(测量) 人工神经网络 图像(数学) 癌症 医学 内科学 地理 大地测量学
作者
Heyi Li,Dongdong Chen,William H. Nailon,Mike E. Davies,David Laurenson
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (1): 3-13 被引量:69
标识
DOI:10.1109/tmi.2021.3102622
摘要

Deep convolutional neural networks (CNNs) have emerged as a new paradigm for Mammogram diagnosis. Contemporary CNN-based computer-aided-diagnosis systems (CADs) for breast cancer directly extract latent features from input mammogram image and ignore the importance of morphological features. In this paper, we introduce a novel end-to-end deep learning framework for mammogram image processing, which computes mass segmentation and simultaneously predicts diagnosis results. Specifically, our method is constructed in a dual-path architecture that solves the mapping in a dual-problem manner, with an additional consideration of important shape and boundary knowledge. One path, called the Locality Preserving Learner (LPL), is devoted to hierarchically extracting and exploiting intrinsic features of the input. Whereas the other path, called the Conditional Graph Learner (CGL), focuses on generating geometrical features via modeling pixel-wise image to mask correlations. By integrating the two learners, both the cancer semantics and cancer representations are well learned, and the component learning paths in return complement each other, contributing an improvement to the mass segmentation and cancer classification problem at the same time. In addition, by integrating an automatic detection set-up, the DualCoreNet achieves fully automatic breast cancer diagnosis practically. Experimental results show that in benchmark DDSM dataset, DualCoreNet has outperformed other related works in both segmentation and classification tasks, achieving 92.27% DI coefficient and 0.85 AUC score. In another benchmark INbreast dataset, DualCoreNet achieves the best mammography segmentation (93.69% DI coefficient) and competitive classification performance (0.93 AUC score).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
andy完成签到,获得积分10
刚刚
桐桐发布了新的文献求助50
刚刚
li发布了新的文献求助30
1秒前
包容的剑完成签到 ,获得积分10
2秒前
111完成签到,获得积分10
2秒前
4秒前
Scout完成签到,获得积分10
4秒前
微风打了烊完成签到 ,获得积分10
5秒前
等待的谷波完成签到 ,获得积分10
6秒前
无语的代真完成签到,获得积分10
8秒前
ooa4321完成签到,获得积分10
9秒前
卜天亦完成签到,获得积分10
11秒前
迷路初兰完成签到,获得积分10
11秒前
小二郎应助发呆的小号采纳,获得50
11秒前
11秒前
小羊完成签到 ,获得积分10
15秒前
笑点低的铁身完成签到 ,获得积分10
17秒前
菜头完成签到,获得积分10
18秒前
无花果应助含蓄擎宇采纳,获得10
18秒前
19秒前
吨吨喝水完成签到,获得积分10
20秒前
22秒前
芊芊完成签到 ,获得积分10
22秒前
24秒前
24秒前
jyy应助吨吨喝水采纳,获得10
24秒前
tonydymt完成签到 ,获得积分10
24秒前
活泼啤酒完成签到 ,获得积分10
25秒前
25秒前
上官聪展发布了新的文献求助10
25秒前
方圆学术完成签到,获得积分10
25秒前
阿泽完成签到,获得积分10
26秒前
姜恒完成签到,获得积分10
27秒前
27秒前
踏实的洋葱完成签到,获得积分10
28秒前
nancy发布了新的文献求助10
28秒前
28秒前
默默的依凝完成签到,获得积分10
29秒前
8R60d8应助Zz采纳,获得10
30秒前
俭朴仇血发布了新的文献求助10
31秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801165
求助须知:如何正确求助?哪些是违规求助? 3346853
关于积分的说明 10330624
捐赠科研通 3063166
什么是DOI,文献DOI怎么找? 1681445
邀请新用户注册赠送积分活动 807567
科研通“疑难数据库(出版商)”最低求助积分说明 763728