Automated Triage of Screening Breast MRI Examinations in High-Risk Women Using an Ensemble Deep Learning Model

急诊分诊台 医学 磁共振成像 乳房磁振造影 乳房成像 放射科 工作量 金标准(测试) 乳腺癌 数据集 回顾性队列研究 人工智能 乳腺摄影术 医学物理学 癌症 计算机科学 病理 急诊医学 内科学 操作系统
作者
Arka Bhowmik,Natasha Monga,Kristin Belen,Keitha Varela,Varadan Sevilimedu,Sunitha B. Thakur,Danny F. Martinez,Elizabeth Sutton,Katja Pinker,Sarah Eskreis‐Winkler
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
卷期号:58 (10): 710-719
标识
DOI:10.1097/rli.0000000000000976
摘要

Objectives The aim of the study is to develop and evaluate the performance of a deep learning (DL) model to triage breast magnetic resonance imaging (MRI) findings in high-risk patients without missing any cancers. Materials and Methods In this retrospective study, 16,535 consecutive contrast-enhanced MRIs performed in 8354 women from January 2013 to January 2019 were collected. From 3 New York imaging sites, 14,768 MRIs were used for the training and validation data set, and 80 randomly selected MRIs were used for a reader study test data set. From 3 New Jersey imaging sites, 1687 MRIs (1441 screening MRIs and 246 MRIs performed in recently diagnosed breast cancer patients) were used for an external validation data set. The DL model was trained to classify maximum intensity projection images as “extremely low suspicion” or “possibly suspicious.” Deep learning model evaluation (workload reduction, sensitivity, specificity) was performed on the external validation data set, using a histopathology reference standard. A reader study was performed to compare DL model performance to fellowship-trained breast imaging radiologists. Results In the external validation data set, the DL model triaged 159/1441 of screening MRIs as “extremely low suspicion” without missing a single cancer, yielding a workload reduction of 11%, a specificity of 11.5%, and a sensitivity of 100%. The model correctly triaged 246/246 (100% sensitivity) of MRIs in recently diagnosed patients as “possibly suspicious.” In the reader study, 2 readers classified MRIs with a specificity of 93.62% and 91.49%, respectively, and missed 0 and 1 cancer, respectively. On the other hand, the DL model classified MRIs with a specificity of 19.15% and missed 0 cancers, highlighting its potential use not as an independent reader but as a triage tool. Conclusions Our automated DL model triages a subset of screening breast MRIs as “extremely low suspicion” without misclassifying any cancer cases. This tool may be used to reduce workload in standalone mode, to shunt low suspicion cases to designated radiologists or to the end of the workday, or to serve as base model for other downstream AI tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
cxk0108完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
酷波er应助一个小胖子采纳,获得10
5秒前
anyycui完成签到,获得积分10
5秒前
酱紫发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
8秒前
lwypku发布了新的文献求助10
9秒前
pxin发布了新的文献求助10
9秒前
9秒前
breeze完成签到,获得积分10
10秒前
nienie发布了新的文献求助10
10秒前
打打应助科研通管家采纳,获得10
11秒前
iNk应助科研通管家采纳,获得20
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
11哥应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
iNk应助科研通管家采纳,获得20
11秒前
xuexin发布了新的文献求助10
12秒前
高c完成签到,获得积分10
12秒前
ZhouYW应助黄佳采纳,获得10
12秒前
粥粥发布了新的文献求助20
12秒前
13秒前
14秒前
Peter Pan发布了新的文献求助10
15秒前
15秒前
15秒前
万莎莎发布了新的文献求助10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791401
求助须知:如何正确求助?哪些是违规求助? 3335858
关于积分的说明 10277662
捐赠科研通 3052572
什么是DOI,文献DOI怎么找? 1675134
邀请新用户注册赠送积分活动 803163
科研通“疑难数据库(出版商)”最低求助积分说明 761111