Machine learning-based identification of a psychotherapy-predictive electroencephalographic signature in PTSD

脑电图 心理干预 心理学 临床心理学 机器学习 心理治疗师 计算机科学 精神科
作者
Yu Zhang,Sharon Naparstek,Joseph R. Gordon,Mallissa Watts,Emmanuel Shpigel,Dawlat El-Said,Faizan Badami,Michelle L. Eisenberg,Russell Toll,Allyson Gage,Madeleine S. Goodkind,Amit Etkin,Wei Wu
标识
DOI:10.1038/s44220-023-00049-5
摘要

Although psychotherapy is at present the most effective treatment for posttraumatic stress disorder (PTSD), its efficacy is still limited for many patients, due mainly to the substantial clinical and neurobiological heterogeneity in the disease. Development of treatment-predictive algorithms by leveraging machine learning on brain connectivity data can advance our understanding of the neurobiological mechanisms underlying the disease and its treatment. Doing so with low-cost and easy-to-gather electroencephalogram (EEG) data may furthermore facilitate clinical translation of such algorithms for patients with PTSD. This study investigates whether individual patient-level resting-state EEG connectivity can predict psychotherapy outcomes in PTSD. We developed a treatment-predictive EEG signature using machine learning applied to high-density resting-state EEG collected from military veterans with PTSD. The predictive signature was dominated by theta frequency EEG connectivity differences and was able to generalize across two types of psychotherapy—prolonged exposure and cognitive processing therapy. Our results also advance a biological definition of a PTSD patient subgroup who is resistant to psychotherapy, which is currently the most evidence-based treatment for the condition. The findings support a path towards clinically translatable and scalable biomarkers that could be used to tailor interventions for each individual or drive the development of novel treatments (ClinicalTrials.gov registration: NCT03343028 ). Using machine learning, Zhang et al. identify EEG signature to predict psychotherapy outcomes in PTSD, paving the way towards the development of scalable biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzzmy完成签到,获得积分10
刚刚
起風了发布了新的文献求助10
刚刚
李李发布了新的文献求助30
刚刚
1秒前
明芬发布了新的文献求助10
1秒前
2秒前
2秒前
轻松书包完成签到,获得积分20
3秒前
Hanni完成签到 ,获得积分10
3秒前
seeeherrrr发布了新的文献求助20
4秒前
5秒前
酷波er应助Goomo采纳,获得10
5秒前
隐形的宝宝完成签到,获得积分10
6秒前
7秒前
CH完成签到,获得积分10
7秒前
7秒前
暴躁的嘉懿完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
科研通AI6应助平常澜采纳,获得10
9秒前
清澈水眸发布了新的文献求助10
10秒前
chengyu应助负责音响采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
耍酷如柏发布了新的文献求助10
11秒前
纳尼发布了新的文献求助10
11秒前
卡卡完成签到,获得积分10
11秒前
ljw完成签到 ,获得积分10
12秒前
12秒前
12秒前
席河木鱼完成签到,获得积分10
12秒前
郁香薇完成签到,获得积分10
15秒前
大气早晨发布了新的文献求助10
15秒前
wyb关注了科研通微信公众号
18秒前
充电宝应助王敬顺采纳,获得10
19秒前
20秒前
量子星尘发布了新的文献求助10
22秒前
耍酷如柏完成签到,获得积分10
22秒前
d.zhang完成签到,获得积分10
22秒前
李李完成签到,获得积分10
23秒前
Goomo发布了新的文献求助10
23秒前
24秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5700397
求助须知:如何正确求助?哪些是违规求助? 5137027
关于积分的说明 15229954
捐赠科研通 4855359
什么是DOI,文献DOI怎么找? 2605301
邀请新用户注册赠送积分活动 1556711
关于科研通互助平台的介绍 1514725