Machine learning-based identification of a psychotherapy-predictive electroencephalographic signature in PTSD

脑电图 心理干预 心理学 临床心理学 机器学习 心理治疗师 计算机科学 精神科
作者
Yu Zhang,Sharon Naparstek,Joseph R. Gordon,Mallissa Watts,Emmanuel Shpigel,Dawlat El-Said,Faizan Badami,Michelle L. Eisenberg,Russell T. Toll,Allyson Gage,Madeleine S. Goodkind,Amit Etkin,Wei Wu
标识
DOI:10.1038/s44220-023-00049-5
摘要

Although psychotherapy is at present the most effective treatment for posttraumatic stress disorder (PTSD), its efficacy is still limited for many patients, due mainly to the substantial clinical and neurobiological heterogeneity in the disease. Development of treatment-predictive algorithms by leveraging machine learning on brain connectivity data can advance our understanding of the neurobiological mechanisms underlying the disease and its treatment. Doing so with low-cost and easy-to-gather electroencephalogram (EEG) data may furthermore facilitate clinical translation of such algorithms for patients with PTSD. This study investigates whether individual patient-level resting-state EEG connectivity can predict psychotherapy outcomes in PTSD. We developed a treatment-predictive EEG signature using machine learning applied to high-density resting-state EEG collected from military veterans with PTSD. The predictive signature was dominated by theta frequency EEG connectivity differences and was able to generalize across two types of psychotherapy—prolonged exposure and cognitive processing therapy. Our results also advance a biological definition of a PTSD patient subgroup who is resistant to psychotherapy, which is currently the most evidence-based treatment for the condition. The findings support a path towards clinically translatable and scalable biomarkers that could be used to tailor interventions for each individual or drive the development of novel treatments (ClinicalTrials.gov registration: NCT03343028 ). Using machine learning, Zhang et al. identify EEG signature to predict psychotherapy outcomes in PTSD, paving the way towards the development of scalable biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
天天开心发布了新的文献求助10
2秒前
dsf完成签到,获得积分10
2秒前
小鹿斑比发布了新的文献求助30
4秒前
orixero应助as采纳,获得10
5秒前
天天开心完成签到,获得积分10
6秒前
郝老头完成签到,获得积分0
7秒前
汪汪别吃了完成签到,获得积分10
7秒前
8秒前
小鹿斑比完成签到,获得积分10
11秒前
11秒前
wuming7890发布了新的文献求助10
13秒前
15秒前
会飞的小猪完成签到,获得积分10
17秒前
as发布了新的文献求助10
17秒前
17秒前
19秒前
19秒前
Echo完成签到,获得积分20
21秒前
庄建成发布了新的文献求助10
21秒前
小糯米完成签到,获得积分10
21秒前
22秒前
丘比特应助虚拟的山雁采纳,获得10
22秒前
22秒前
迷人成协发布了新的文献求助10
24秒前
25秒前
26秒前
小伊娃应助虚拟的山雁采纳,获得10
26秒前
冷艳铁身发布了新的文献求助10
28秒前
28秒前
研友_VZG7GZ应助理li采纳,获得10
29秒前
赘婿应助北冥有鱼采纳,获得30
30秒前
秦梦瑶瑶发布了新的文献求助10
30秒前
30秒前
Cala洛~发布了新的文献求助10
30秒前
科研通AI5应助虚拟的山雁采纳,获得10
31秒前
31秒前
33秒前
庄建成发布了新的文献求助10
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Rise & Fall of Classical Legal Thought 260
Innovative strategies for the rapid restoration of intestinal function in patients undergoing abdominal surgery: use of probiotics. Pilot study of 15 patients 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4334027
求助须知:如何正确求助?哪些是违规求助? 3845427
关于积分的说明 12011560
捐赠科研通 3485992
什么是DOI,文献DOI怎么找? 1913508
邀请新用户注册赠送积分活动 956651
科研通“疑难数据库(出版商)”最低求助积分说明 857336