Empowering ultrathin polyamide membranes at the water–energy nexus: strategies, limitations, and future perspectives

聚酰胺 界面聚合 薄膜复合膜 海水淡化 渗透 材料科学 纳米技术 反渗透 聚合物 基质(水族馆) 纳滤 化学工程 工艺工程 化学 高分子化学 工程类 复合材料 单体 生物化学 海洋学 地质学
作者
Pulak Sarkar,Chengzhi Wu,Zhe Yang,Chuyang Y. Tang
出处
期刊:Chemical Society Reviews [The Royal Society of Chemistry]
标识
DOI:10.1039/d3cs00803g
摘要

Membrane-based separation is one of the most energy-efficient methods to meet the growing need for a significant amount of fresh water. It is also well-known for its applications in water treatment, desalination, solvent recycling, and environmental remediation. Most typical membranes used for separation-based applications are thin-film composite membranes created using polymers, featuring a top selective layer generated by employing the interfacial polymerization technique at an aqueous-organic interface. In the last decade, various manufacturing techniques have been developed in order to create high-specification membranes. Among them, the creation of ultrathin polyamide membranes has shown enormous potential for achieving a significant increase in the water permeation rate, translating into major energy savings in various applications. However, this great potential of ultrathin membranes is greatly hindered by undesired transport phenomena such as the geometry-induced "funnel effect" arising from the substrate membrane, severely limiting the actual permeation rate. As a result, the separation capability of ultrathin membranes is still not fully unleashed or understood, and a critical assessment of their limitations and potential solutions for future studies is still lacking. Here, we provide a summary of the latest developments in the design of ultrathin polyamide membranes, which have been achieved by controlling the interfacial polymerization process and utilizing a number of novel manufacturing processes for ionic and molecular separations. Next, an overview of the in-depth assessment of their limitations resulting from the substrate membrane, along with potential solutions and future perspectives will be covered in this review.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谦让小松鼠完成签到,获得积分10
1秒前
1秒前
单薄小蜜蜂完成签到,获得积分10
2秒前
小白完成签到,获得积分10
3秒前
ding应助刘家成采纳,获得10
4秒前
Blue完成签到,获得积分10
4秒前
money发布了新的文献求助20
6秒前
7秒前
8秒前
三块石头完成签到,获得积分10
8秒前
8秒前
aka小满完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
10秒前
SOLOMON应助百合子采纳,获得20
12秒前
12秒前
乐观夏波发布了新的文献求助10
12秒前
mervin发布了新的文献求助10
12秒前
Buaa_Jack完成签到,获得积分10
14秒前
qgjvjypm发布了新的文献求助10
14秒前
15秒前
hello发布了新的文献求助10
15秒前
RBT发布了新的文献求助10
15秒前
16秒前
16秒前
赘婿应助Meng采纳,获得10
17秒前
18秒前
jacs发布了新的文献求助10
18秒前
老实的秋寒完成签到,获得积分10
19秒前
Owen应助风中白云采纳,获得10
20秒前
王汐发布了新的文献求助10
20秒前
nanmu完成签到 ,获得积分10
20秒前
胖胖完成签到 ,获得积分10
20秒前
星辰大海应助科研通管家采纳,获得10
20秒前
斯文败类应助科研通管家采纳,获得10
20秒前
大模型应助科研通管家采纳,获得10
20秒前
脑洞疼应助科研通管家采纳,获得10
20秒前
丘比特应助科研通管家采纳,获得10
20秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Gymnastik für die Jugend 600
Chinese-English Translation Lexicon Version 3.0 500
マンネンタケ科植物由来メロテルペノイド類の網羅的全合成/Collective Synthesis of Meroterpenoids Derived from Ganoderma Family 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 440
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 400
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2385831
求助须知:如何正确求助?哪些是违规求助? 2092275
关于积分的说明 5263399
捐赠科研通 1819320
什么是DOI,文献DOI怎么找? 907369
版权声明 559174
科研通“疑难数据库(出版商)”最低求助积分说明 484706