Intelligent Stress‐Adaptive Binder Enabled by Shear‐Thickening Property for Silicon Electrodes of Lithium‐Ion Batteries

材料科学 复合材料 锂(药物) 电极 剪应力 离子 压力(语言学) 剪切(地质) 增稠 纳米技术 冶金 高分子科学 医学 语言学 化学 物理 哲学 物理化学 量子力学 内分泌学
作者
Ohhyun Kwon,Tae Yong Kim,Tae-Won Kim,Jihyeon Kang,Seohyeon Jang,Hojong Eom,Se‐Young Choi,Junhyeop Shin,Jong-Kwon Park,Myeong‐Lok Seol,Jeong Woo Han,Soomin Park,Hyun‐Wook Lee,Inho Nam
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:14 (20) 被引量:17
标识
DOI:10.1002/aenm.202304085
摘要

Abstract Elastic binders with supramolecular interactions are widely explored to mitigate the stress caused by the volume expansion of electrode materials, such as Si, S, or Li metals, in next‐generation secondary batteries. Herein, a new class of elastic binders is proposed with an automatic stress‐control mechanism capable of responding in real time to dynamic local stress variations. Specifically, this study focuses on the shear‐thickening behavior, wherein polymers automatically amplify their viscoelasticity in response to local shear‐stress changes. To realize an intelligent stress‐adaptive binder, starch analogs exhibiting shear‐thickening properties and unique crystallinity are employed as binders for highly expandable Si anodes. The shear‐thickening mechanism is comprehensively investigated using deep‐learning‐based molecular dynamics (MD) simulations and in situ transmission electron microscopy (TEM) analysis, which determines the optimal conditions for effectively limiting dynamic local surface expansion. Among the starch analogs, the amylose and long‐chain amylopectin (AMLAP) binder demonstrates improved high‐rate capability (1710 mAh g −1 at 5 C) and superior reversible capacity (2025 and 1493 mAh g −1 after 100 and 500 cycles, respectively, at 1 C) with optimal shear‐thickening properties. Furthermore, AMLAP exhibits favorable characteristics for affordable large‐scale production. Hence, this study clearly demonstrates that the shear‐thickening properties of binders can be considered a new factor in fabricating stable electrodes with extremely expandable materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
QSJ完成签到,获得积分10
刚刚
1秒前
1秒前
Owen应助gguc采纳,获得10
1秒前
ZHANG给手握春夏的求助进行了留言
1秒前
present完成签到,获得积分10
2秒前
小黄不慌完成签到,获得积分10
2秒前
小二郎应助犹豫友梅采纳,获得10
2秒前
2秒前
l玖发布了新的文献求助10
2秒前
zoumingyu完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
bkagyin应助欣喜的忆秋采纳,获得30
4秒前
此间少年郎完成签到 ,获得积分10
4秒前
晴朗发布了新的文献求助10
4秒前
5秒前
白白发布了新的文献求助10
5秒前
6秒前
6秒前
情怀应助xxx采纳,获得10
6秒前
单薄雨安完成签到,获得积分10
6秒前
四号玩家发布了新的文献求助10
7秒前
多罗罗发布了新的文献求助10
7秒前
蓝星发布了新的文献求助10
7秒前
仲夏发布了新的文献求助10
7秒前
华仔应助seed85采纳,获得10
8秒前
8秒前
倚歌发布了新的文献求助10
8秒前
8秒前
噜啦啦完成签到,获得积分10
8秒前
9秒前
亚米完成签到,获得积分10
9秒前
打打应助OuO采纳,获得10
9秒前
HOXXXiii完成签到,获得积分10
9秒前
光亮梦易完成签到 ,获得积分10
9秒前
exculibur完成签到,获得积分10
9秒前
充电宝应助clear采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473503
求助须知:如何正确求助?哪些是违规求助? 4575665
关于积分的说明 14353545
捐赠科研通 4503157
什么是DOI,文献DOI怎么找? 2467534
邀请新用户注册赠送积分活动 1455373
关于科研通互助平台的介绍 1429357