Learning Part Segmentation from Synthetic Animals

计算机科学 分割 人工智能 图像分割 计算机视觉
作者
Jiawei Peng,Ju He,Prakhar Kaushik,Zihao Xiao,Jiteng Mu,Alan Yuille
标识
DOI:10.1109/wacvw60836.2024.00015
摘要

Semantic part segmentation provides an intricate and interpretable understanding of an object, thereby benefiting numerous downstream tasks. However, the need for exhaustive annotations impedes its usage across diverse object types. This paper focuses on learning part segmentation from synthetic animals, leveraging the Skinned Multi-Animal Linear (SMAL) models to scale up existing synthetic data generated by computer-aided design (CAD) animal models. Compared to CAD models, SMAL models generate data with a wider range of poses observed in real-world scenarios. As a result, our first contribution is to construct a synthetic animal dataset of tigers and horses with more pose diversity, termed Synthetic Animal Parts (SAP). We then benchmark Syn-to-Real animal part segmentation from SAP to PartImageNet, namely SynRealPart, with existing semantic segmentation domain adaptation methods and further improve them as our second contribution. Concretely, we examine three Syn-to-Real adaptation methods but observe relative performance drop due to the innate difference between the two tasks. To address this, we propose a simple yet effective method called Class-Balanced Fourier Data Mixing (CB-FDM). Fourier Data Mixing aligns the spectral amplitudes of synthetic images with real images, thereby making the mixed images have more similar frequency content to real images. We further use Class-Balanced Pseudo-Label Re-Weighting to alleviate the imbalanced class distribution. We demonstrate the efficacy of CB-FDM on SynRealPart over previous methods with significant performance improvements. Remarkably, our third contribution is to reveal that the learned parts from synthetic tiger and horse are transferable across all quadrupeds in PartImageNet, further underscoring the utility and potential applications of animal part segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桃井尤川完成签到,获得积分10
1秒前
3秒前
洞悉完成签到,获得积分10
3秒前
零零二完成签到 ,获得积分10
4秒前
7秒前
9秒前
橙蓝发布了新的文献求助100
9秒前
旅程完成签到,获得积分10
10秒前
Jasper应助xun采纳,获得10
11秒前
小慕斯发布了新的文献求助10
11秒前
shutup完成签到,获得积分10
13秒前
laber应助liyu采纳,获得50
13秒前
ljs完成签到,获得积分10
16秒前
英俊的铭应助苏苏采纳,获得10
16秒前
小二郎应助ju采纳,获得10
18秒前
blossoms完成签到 ,获得积分10
20秒前
liyu给liyu的求助进行了留言
21秒前
ljs发布了新的文献求助10
22秒前
科研助手6应助能HJY采纳,获得10
22秒前
朴素的士晋完成签到 ,获得积分10
25秒前
25秒前
认真的飞扬完成签到,获得积分10
25秒前
小媛完成签到 ,获得积分10
26秒前
tianshanfeihe完成签到 ,获得积分10
26秒前
shuang完成签到 ,获得积分10
26秒前
zz完成签到,获得积分10
27秒前
27秒前
Rain完成签到,获得积分10
29秒前
明亮巨人完成签到 ,获得积分10
29秒前
xun发布了新的文献求助10
29秒前
科研通AI2S应助邵翎365采纳,获得10
30秒前
苏苏发布了新的文献求助10
31秒前
hs完成签到,获得积分10
32秒前
是鑫鑫完成签到,获得积分20
39秒前
冰激凌完成签到,获得积分10
39秒前
kiwi发布了新的文献求助10
40秒前
材1完成签到 ,获得积分10
40秒前
开心夏旋完成签到 ,获得积分10
40秒前
41秒前
41秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801134
求助须知:如何正确求助?哪些是违规求助? 3346777
关于积分的说明 10330258
捐赠科研通 3063151
什么是DOI,文献DOI怎么找? 1681383
邀请新用户注册赠送积分活动 807540
科研通“疑难数据库(出版商)”最低求助积分说明 763728