亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DesTrans: A medical image fusion method based on Transformer and improved DenseNet

计算机科学 人工智能 变压器 图像融合 深度学习 特征提取 冗余(工程) 像素 计算机视觉 模式识别(心理学) 图像(数学) 工程类 电压 电气工程 操作系统
作者
Yumeng Song,Yin Dai,Weibin Liu,Yue Liu,Xinpeng Liu,Qi Yu,Xinghan Liu,Ningfeng Que,Mingzhe Li
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:174: 108463-108463 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108463
摘要

Medical image fusion can provide doctors with more detailed data and thus improve the accuracy of disease diagnosis. In recent years, deep learning has been widely used in the field of medical image fusion. The traditional method of medical image fusion is to operate by superimposing and other methods of pixels. The introduction of deep learning methods has improved the effectiveness of medical image fusion. However, these methods still have problems such as edge blurring and information redundancy. In this paper, we propose a deep learning network model based on Transformer and an improved DenseNet network module integration that can be applied to medical images and solve the above problems. At the same time, the method can be moved to natural images. The use of Transformer and dense concatenation enhances the feature extraction capability of the method by limiting the feature loss which reduces the risk of edge blurring. We compared several representative traditional methods and more advanced deep learning methods with this method. The experimental results show that the Transformer and the improved DenseNet network module have a strong capability of feature extraction. The method yields good results both in terms of visual quality and objective image evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
15秒前
wanci应助天真咖啡豆采纳,获得10
19秒前
nini完成签到,获得积分10
22秒前
香蕉觅云应助myt采纳,获得30
30秒前
44秒前
47秒前
49秒前
zzy发布了新的文献求助10
54秒前
科研通AI2S应助jusuday采纳,获得10
55秒前
Spice完成签到 ,获得积分10
1分钟前
默默地读文献应助nini采纳,获得10
1分钟前
谨慎开山发布了新的文献求助10
1分钟前
1分钟前
1分钟前
jingchengke完成签到,获得积分10
1分钟前
1分钟前
jingchengke发布了新的文献求助30
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
andrele应助科研通管家采纳,获得10
1分钟前
情怀应助天真咖啡豆采纳,获得10
1分钟前
Amon完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
amengptsd完成签到,获得积分10
2分钟前
wanci应助天真咖啡豆采纳,获得10
2分钟前
2分钟前
2分钟前
情怀应助Aierlan611采纳,获得10
2分钟前
2分钟前
2分钟前
运运完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
blenx完成签到,获得积分10
2分钟前
caca完成签到,获得积分0
2分钟前
3分钟前
小蘑菇应助天真咖啡豆采纳,获得10
3分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800920
求助须知:如何正确求助?哪些是违规求助? 3346429
关于积分的说明 10329297
捐赠科研通 3062969
什么是DOI,文献DOI怎么找? 1681276
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763713