Advancing Ligand Docking through Deep Learning: Challenges and Prospects in Virtual Screening

虚拟筛选 对接(动物) 计算机科学 结合亲和力 人工智能 机器学习 启发式 药物发现 计算生物学 化学 生物信息学 生物 生物化学 医学 护理部 受体
作者
Xujun Zhang,Chao Shen,Haotian Zhang,Yu Kang,Chang‐Yu Hsieh,Tingjun Hou
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:57 (10): 1500-1509 被引量:20
标识
DOI:10.1021/acs.accounts.4c00093
摘要

ConspectusMolecular docking, also termed ligand docking (LD), is a pivotal element of structure-based virtual screening (SBVS) used to predict the binding conformations and affinities of protein–ligand complexes. Traditional LD methodologies rely on a search and scoring framework, utilizing heuristic algorithms to explore binding conformations and scoring functions to evaluate binding strengths. However, to meet the efficiency demands of SBVS, these algorithms and functions are often simplified, prioritizing speed over accuracy.The emergence of deep learning (DL) has exerted a profound impact on diverse fields, ranging from natural language processing to computer vision and drug discovery. DeepMind's AlphaFold2 has impressively exhibited its ability to accurately predict protein structures solely from amino acid sequences, highlighting the remarkable potential of DL in conformation prediction. This groundbreaking advancement circumvents the traditional search-scoring frameworks in LD, enhancing both accuracy and processing speed and thereby catalyzing a broader adoption of DL algorithms in binding pose prediction. Nevertheless, a consensus on certain aspects remains elusive.In this Account, we delineate the current status of employing DL to augment LD within the VS paradigm, highlighting our contributions to this domain. Furthermore, we discuss the challenges and future prospects, drawing insights from our scholarly investigations. Initially, we present an overview of VS and LD, followed by an introduction to DL paradigms, which deviate significantly from traditional search-scoring frameworks. Subsequently, we delve into the challenges associated with the development of DL-based LD (DLLD), encompassing evaluation metrics, application scenarios, and physical plausibility of the predicted conformations. In the evaluation of LD algorithms, it is essential to recognize the multifaceted nature of the metrics. While the accuracy of binding pose prediction, often measured by the success rate, is a pivotal aspect, the scoring/screening power and computational speed of these algorithms are equally important given the pivotal role of LD tools in VS. Regarding application scenarios, early methods focused on blind docking, where the binding site is unknown. However, recent studies suggest a shift toward identifying binding sites rather than solely predicting binding poses within these models. In contrast, LD with a known pocket in VS has been shown to be more practical. Physical plausibility poses another significant challenge. Although DLLD models often achieve higher success rates compared to traditional methods, they may generate poses with implausible local structures, such as incorrect bond angles or lengths, which are disadvantageous for postprocessing tasks like visualization. Finally, we discuss the future perspectives for DLLD, emphasizing the need to improve generalization ability, strike a balance between speed and accuracy, account for protein conformation flexibility, and enhance physical plausibility. Additionally, we delve into the comparison between generative and regression algorithms in this context, exploring their respective strengths and potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
czj完成签到,获得积分0
1秒前
2秒前
Pluminata应助同学好采纳,获得10
3秒前
黄郑翔发布了新的文献求助10
5秒前
5秒前
lei发布了新的文献求助10
5秒前
大方万仇发布了新的文献求助10
6秒前
uone完成签到,获得积分10
7秒前
wqq完成签到,获得积分20
7秒前
小Q啊啾发布了新的文献求助10
8秒前
慈祥的鸣凤完成签到 ,获得积分10
9秒前
hanshishengye完成签到 ,获得积分10
10秒前
11秒前
shiqiang mu应助王鑫采纳,获得10
11秒前
煜琪发布了新的文献求助10
11秒前
向往完成签到 ,获得积分10
12秒前
昏睡的白桃完成签到,获得积分10
12秒前
感动的世平完成签到,获得积分10
13秒前
14秒前
英姑应助alexysw采纳,获得10
15秒前
李健的小迷弟应助XXF采纳,获得10
15秒前
qing完成签到,获得积分10
16秒前
爱听歌的糖豆完成签到,获得积分10
16秒前
19秒前
超级手套完成签到,获得积分10
20秒前
20秒前
xiaoxiao完成签到 ,获得积分10
21秒前
还行吧完成签到 ,获得积分10
21秒前
21秒前
研友_nqv5WZ完成签到 ,获得积分10
22秒前
李白完成签到,获得积分10
22秒前
22秒前
殊荣完成签到,获得积分10
22秒前
南极的企鹅365完成签到 ,获得积分10
23秒前
23秒前
大方万仇发布了新的文献求助10
23秒前
文献啊文献完成签到,获得积分10
24秒前
louiselong完成签到,获得积分10
24秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1018
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4081482
求助须知:如何正确求助?哪些是违规求助? 3620898
关于积分的说明 11487524
捐赠科研通 3336285
什么是DOI,文献DOI怎么找? 1834076
邀请新用户注册赠送积分活动 902879
科研通“疑难数据库(出版商)”最低求助积分说明 821351