Advancing Ligand Docking through Deep Learning: Challenges and Prospects in Virtual Screening

虚拟筛选 对接(动物) 计算机科学 结合亲和力 人工智能 机器学习 启发式 药物发现 计算生物学 化学 生物信息学 生物 生物化学 医学 护理部 受体
作者
Xujun Zhang,Chao Shen,Haotian Zhang,Yu Kang,Chang‐Yu Hsieh,Tingjun Hou
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:57 (10): 1500-1509 被引量:11
标识
DOI:10.1021/acs.accounts.4c00093
摘要

ConspectusMolecular docking, also termed ligand docking (LD), is a pivotal element of structure-based virtual screening (SBVS) used to predict the binding conformations and affinities of protein–ligand complexes. Traditional LD methodologies rely on a search and scoring framework, utilizing heuristic algorithms to explore binding conformations and scoring functions to evaluate binding strengths. However, to meet the efficiency demands of SBVS, these algorithms and functions are often simplified, prioritizing speed over accuracy.The emergence of deep learning (DL) has exerted a profound impact on diverse fields, ranging from natural language processing to computer vision and drug discovery. DeepMind's AlphaFold2 has impressively exhibited its ability to accurately predict protein structures solely from amino acid sequences, highlighting the remarkable potential of DL in conformation prediction. This groundbreaking advancement circumvents the traditional search-scoring frameworks in LD, enhancing both accuracy and processing speed and thereby catalyzing a broader adoption of DL algorithms in binding pose prediction. Nevertheless, a consensus on certain aspects remains elusive.In this Account, we delineate the current status of employing DL to augment LD within the VS paradigm, highlighting our contributions to this domain. Furthermore, we discuss the challenges and future prospects, drawing insights from our scholarly investigations. Initially, we present an overview of VS and LD, followed by an introduction to DL paradigms, which deviate significantly from traditional search-scoring frameworks. Subsequently, we delve into the challenges associated with the development of DL-based LD (DLLD), encompassing evaluation metrics, application scenarios, and physical plausibility of the predicted conformations. In the evaluation of LD algorithms, it is essential to recognize the multifaceted nature of the metrics. While the accuracy of binding pose prediction, often measured by the success rate, is a pivotal aspect, the scoring/screening power and computational speed of these algorithms are equally important given the pivotal role of LD tools in VS. Regarding application scenarios, early methods focused on blind docking, where the binding site is unknown. However, recent studies suggest a shift toward identifying binding sites rather than solely predicting binding poses within these models. In contrast, LD with a known pocket in VS has been shown to be more practical. Physical plausibility poses another significant challenge. Although DLLD models often achieve higher success rates compared to traditional methods, they may generate poses with implausible local structures, such as incorrect bond angles or lengths, which are disadvantageous for postprocessing tasks like visualization. Finally, we discuss the future perspectives for DLLD, emphasizing the need to improve generalization ability, strike a balance between speed and accuracy, account for protein conformation flexibility, and enhance physical plausibility. Additionally, we delve into the comparison between generative and regression algorithms in this context, exploring their respective strengths and potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
潇潇雨歇发布了新的文献求助10
2秒前
2秒前
misong完成签到 ,获得积分10
2秒前
miemie完成签到,获得积分10
4秒前
4秒前
CipherSage应助布医采纳,获得10
5秒前
JamesPei应助叶宇豪采纳,获得10
5秒前
qikkk完成签到,获得积分10
5秒前
小马甲应助Ayumi采纳,获得30
5秒前
科研通AI5应助ZYX911007采纳,获得10
6秒前
小橙子发布了新的文献求助10
7秒前
123发布了新的文献求助10
7秒前
zhuhaot发布了新的文献求助50
7秒前
终于开始完成签到,获得积分20
9秒前
9秒前
兴奋大马喽完成签到,获得积分10
9秒前
终于开始发布了新的文献求助10
12秒前
ZJX完成签到,获得积分10
12秒前
善学以致用应助meng采纳,获得10
14秒前
上官若男应助隐形黄蜂采纳,获得10
15秒前
外向的纸飞机完成签到,获得积分10
15秒前
15秒前
浅色墨水完成签到,获得积分10
16秒前
Kayla完成签到 ,获得积分10
16秒前
河豚不擦鞋完成签到 ,获得积分10
17秒前
脑洞疼应助小橙子采纳,获得30
18秒前
18秒前
懂梦发布了新的文献求助10
20秒前
Ayumi给Ayumi的求助进行了留言
20秒前
布医发布了新的文献求助10
21秒前
23秒前
斯文败类应助bm采纳,获得10
23秒前
调皮的老王头完成签到,获得积分10
24秒前
24秒前
zho发布了新的文献求助10
24秒前
TAOS完成签到 ,获得积分10
24秒前
647完成签到,获得积分10
27秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805322
求助须知:如何正确求助?哪些是违规求助? 3350279
关于积分的说明 10348304
捐赠科研通 3066188
什么是DOI,文献DOI怎么找? 1683602
邀请新用户注册赠送积分活动 809099
科研通“疑难数据库(出版商)”最低求助积分说明 765225