Blockchain-empowered Federated Learning: Challenges, Solutions, and Future Directions

计算机科学 块链 联合学习 可靠性 数据科学 可信赖性 分类 计算机安全 人工智能 政治学 法学
作者
Juncen Zhu,Jiannong Cao,Divya Saxena,Shan Jiang,Houda Ferradi
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:55 (11): 1-31 被引量:139
标识
DOI:10.1145/3570953
摘要

Federated learning is a privacy-preserving machine learning technique that trains models across multiple devices holding local data samples without exchanging them. There are many challenging issues in federated learning, such as coordinating participants’ activities, arbitrating their benefits, and aggregating models. Most existing solutions employ a centralized approach, in which a trustworthy central authority is needed for coordination. Such an approach incurs many disadvantages, including vulnerability to attacks, lack of credibility, and difficulty in calculating rewards. Recently, blockchain was identified as a potential solution for addressing the abovementioned issues. Extensive research has been conducted, and many approaches, methods, and techniques have been proposed. There is a need for a systematic survey to examine how blockchain can empower federated learning. Although there are many surveys on federated learning, few of them cover blockchain as an enabling technology. This work comprehensively surveys challenges, solutions, and future directions for blockchain-empowered federated learning (BlockFed). First, we identify the critical issues in federated learning and explain why blockchain provides a potential approach to addressing these issues. Second, we categorize existing system models into three classes: decoupled, coupled, and overlapped, according to how the federated learning and blockchain functions are integrated. Then we compare the advantages and disadvantages of these three system models, regard the disadvantages as challenging issues in BlockFed, and investigate corresponding solutions. Finally, we identify and discuss the future directions, including open problems in BlockFed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leonard应助垚祎采纳,获得10
刚刚
罗先生完成签到,获得积分10
刚刚
嘎嘎嘎发布了新的文献求助10
2秒前
2秒前
3秒前
111发布了新的文献求助10
4秒前
shz8012发布了新的文献求助10
4秒前
打打应助歌尔德蒙采纳,获得10
4秒前
骜111完成签到,获得积分10
4秒前
希望天下0贩的0应助江波采纳,获得10
5秒前
5秒前
5秒前
有魅力雨旋完成签到,获得积分10
6秒前
1213完成签到,获得积分10
6秒前
充电宝应助潇飞天下采纳,获得10
7秒前
8秒前
9秒前
amanda发布了新的文献求助10
9秒前
FashionBoy应助幽悠梦儿采纳,获得10
10秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
嘎嘎嘎完成签到,获得积分10
10秒前
yatuitui完成签到,获得积分10
10秒前
现代的无春完成签到,获得积分10
11秒前
流霜完成签到 ,获得积分10
11秒前
沉默傲芙完成签到 ,获得积分10
11秒前
11秒前
fanpengzhen完成签到,获得积分10
12秒前
Hello应助端庄断秋采纳,获得10
13秒前
shz8012完成签到,获得积分10
13秒前
13秒前
JamesPei应助wenqin采纳,获得10
13秒前
鲫鱼丸丸饼完成签到,获得积分10
14秒前
FashionBoy应助谦让夜香采纳,获得10
14秒前
14秒前
manny完成签到,获得积分10
15秒前
16秒前
英俊的铭应助闪闪的夜阑采纳,获得10
16秒前
慕青应助Wendy0911采纳,获得10
16秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Learning to Listen, Listening to Learn 570
The Psychology of Advertising (5th edition) 550
Key Questions in Second Language Acquisition 500
2023 ASHRAE Handbook HVAC Applications (SI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3873370
求助须知:如何正确求助?哪些是违规求助? 3415654
关于积分的说明 10695295
捐赠科研通 3139870
什么是DOI,文献DOI怎么找? 1732415
邀请新用户注册赠送积分活动 835401
科研通“疑难数据库(出版商)”最低求助积分说明 781967