Automated surgical workflow identification by artificial intelligence in laparoscopic hepatectomy: Experimental research

工作流程 人工智能 鉴定(生物学) 医学 卷积神经网络 深度学习 机器学习 计算机科学 数据库 植物 生物
作者
Kimimasa Sasaki,Masaaki Ito,Shin Kobayashi,Daichi Kitaguchi,Hiroki Matsuzaki,Masashi Kudo,Hiro Hasegawa,Nobuyoshi Takeshita,Motokazu Sugimoto,Shuichi Mitsunaga,Naoto Gotohda
出处
期刊:International Journal of Surgery [Wolters Kluwer]
卷期号:105: 106856-106856 被引量:11
标识
DOI:10.1016/j.ijsu.2022.106856
摘要

To perform accurate laparoscopic hepatectomy (LH) without injury, novel intraoperative systems of computer-assisted surgery (CAS) for LH are expected. Automated surgical workflow identification is a key component for developing CAS systems. This study aimed to develop a deep-learning model for automated surgical step identification in LH.We constructed a dataset comprising 40 cases of pure LH videos; 30 and 10 cases were used for the training and testing datasets, respectively. Each video was divided into 30 frames per second as static images. LH was divided into nine surgical steps (Steps 0-8), and each frame was annotated as being within one of these steps in the training set. After extracorporeal actions (Step 0) were excluded from the video, two deep-learning models of automated surgical step identification for 8-step and 6-step models were developed using a convolutional neural network (Models 1 & 2). Each frame in the testing dataset was classified using the constructed model performed in real-time.Above 8 million frames were annotated for surgical step identification from the pure LH videos. The overall accuracy of Model 1 was 0.891, which was increased to 0.947 in Model 2. Median and average accuracy for each case in Model 2 was 0.927 (range, 0.884-0.997) and 0.937 ± 0.04 (standardized difference), respectively. Real-time automated surgical step identification was performed at 21 frames per second.We developed a highly accurate deep-learning model for surgical step identification in pure LH. Our model could be applied to intraoperative systems of CAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DrChen发布了新的文献求助10
4秒前
Lareina发布了新的文献求助10
5秒前
徐徐完成签到,获得积分10
7秒前
8秒前
GRG完成签到 ,获得积分10
8秒前
Yue完成签到 ,获得积分20
10秒前
岑夜南发布了新的文献求助10
12秒前
xierwalasi完成签到,获得积分10
13秒前
14秒前
16秒前
Yue关注了科研通微信公众号
16秒前
YYYYYY完成签到,获得积分10
19秒前
风趣清炎完成签到,获得积分20
21秒前
21秒前
开心的p发布了新的文献求助10
22秒前
酷波er应助刘燕采纳,获得10
22秒前
iNk应助微渺采纳,获得20
23秒前
云雨发布了新的文献求助10
23秒前
心心发布了新的文献求助10
24秒前
27秒前
zoey完成签到 ,获得积分10
27秒前
开心的p完成签到,获得积分10
27秒前
金字塔完成签到,获得积分10
28秒前
在水一方应助song采纳,获得10
30秒前
32秒前
34秒前
欣欣杨完成签到,获得积分20
35秒前
李健应助xiaoyu采纳,获得10
36秒前
l37u2n应助含糊的书兰采纳,获得10
36秒前
刘燕发布了新的文献求助10
37秒前
合适问安完成签到 ,获得积分10
37秒前
谢谢完成签到,获得积分10
39秒前
39秒前
40秒前
43秒前
44秒前
Johnspeed发布了新的文献求助10
44秒前
wu_shang完成签到,获得积分10
44秒前
huichuanyin完成签到 ,获得积分10
45秒前
JamesPei应助yuyu采纳,获得10
45秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796537
求助须知:如何正确求助?哪些是违规求助? 3341751
关于积分的说明 10307672
捐赠科研通 3058381
什么是DOI,文献DOI怎么找? 1678151
邀请新用户注册赠送积分活动 805906
科研通“疑难数据库(出版商)”最低求助积分说明 762838