Value of non-Gaussian diffusion imaging with a fractional order calculus model combined with conventional MRI for differentiating histological types of cervical cancer

有效扩散系数 磁共振弥散成像 接收机工作特性 磁共振成像 医学 核医学 宫颈癌 数学 放射科 癌症 内科学
作者
Aining Zhang,Qiming Hu,Jiacheng Song,Yongming Dai,Dongmei Wu,Ting Chen
出处
期刊:Magnetic Resonance Imaging [Elsevier BV]
卷期号:93: 181-188 被引量:5
标识
DOI:10.1016/j.mri.2022.08.014
摘要

This study aimed to evaluate the value of a fractional order calculus (FROC) model combined with conventional magnetic resonance imaging (MRI) for differentiating cervical adenocarcinoma (CAC) from squamous cell carcinoma (SCC).Diffusion-weighted imaging (DWI) with 9 b values (0-2000s/mm2) was carried out in 57 cervical cancer patients. Diffusion coefficient (D), fractional order parameter (β), and microstructural quantity (μ) together with apparent diffusion coefficient (ADC) were calculated and compared between the CAC and SCC groups. Conventional MRI features included T2WI signal intensity (SI), unenhanced-T1WI SI, enhanced-T1WI SI, and ∆T1WI SI, which were also compared between the two groups. Receiver operating characteristic (ROC) analysis was employed to assess the performance of FROC parameters, ADC, and conventional MRI features in differentiating CAC from SCC.β was significantly lower in the CAC group than in the SCC group (0.682 ± 0.054 vs. 0.723 ± 0.084, P = 0.035), while D and μ were not significantly different between the two groups (D, P = 0.171; μ, P = 0.127). There was no significant difference in the ADC value between the two groups (P = 0.053). In conventional MRI features, enhanced-T1WI SI was significantly higher in the SCC group than in the CAC group (985.78 ± 130.83 vs. 853.92 ± 149.65, P = 0.002). The area under the curve (AUC) of β, ADC, and enhanced-T1WI SI was 0.700, 0.683, and 0.799, respectively. The combination of β, ADC, and enhanced-T1WI SI revealed optimal diagnostic performance in differentiating CAC from SCC (AUC = 0.930), followed by β + enhanced-T1WI SI (AUC = 0.869), ADC+ enhanced-T1WI SI (AUC = 0.817), and β + ADC (AUC = 0.761).The FROC model can serve as a noninvasive and quantitative imaging technique for differentiating CAC from SCC. β combined with ADC and enhanced-T1WI SI had the highest diagnostic efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
查查发布了新的文献求助10
1秒前
2秒前
cmy关注了科研通微信公众号
3秒前
xuqiansd完成签到,获得积分10
3秒前
leinei发布了新的文献求助10
3秒前
4秒前
5秒前
隐形曼青应助feifei采纳,获得10
7秒前
7秒前
Qxd_111发布了新的文献求助10
8秒前
周少完成签到,获得积分10
9秒前
sda应助科研通管家采纳,获得20
9秒前
gx20发布了新的文献求助10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
核桃应助科研通管家采纳,获得30
9秒前
9秒前
852应助科研通管家采纳,获得10
9秒前
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
怕黑以筠完成签到,获得积分10
10秒前
xiaofan应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
大个应助幸运的小花采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
受伤的无敌完成签到,获得积分10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
猪猪hero应助科研通管家采纳,获得10
10秒前
10秒前
南瓜头完成签到 ,获得积分10
10秒前
11秒前
123额发布了新的文献求助10
11秒前
PhH发布了新的文献求助30
12秒前
科研通AI6应助bm采纳,获得10
12秒前
银银发布了新的文献求助10
12秒前
caicai完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4699399
求助须知:如何正确求助?哪些是违规求助? 4068178
关于积分的说明 12577605
捐赠科研通 3767840
什么是DOI,文献DOI怎么找? 2080931
邀请新用户注册赠送积分活动 1108811
科研通“疑难数据库(出版商)”最低求助积分说明 987057