亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dual‐Site Interfacial O2 Adsorption in a p‐n vdW Heterojunction Boosts Photocatalytic H2O2 Production for Antibacterial Applications

材料科学 光催化 吸附 异质结 密度泛函理论 分解水 物理化学 计算化学 光电子学 催化作用 有机化学 化学
作者
Jie Wang,Guangyu Liu,Yue Wang,Zhirui Chen,Xiaonan Yang,Zhiheng Chen,Yupeng Yuan
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202510720
摘要

Abstract Precise engineering of dual‐site diatomic O 2 adsorption plays a pivotal role in facilitating the one‐step two‐electron oxygen reduction reaction (2e − ORR) for efficient photocatalytic H 2 O 2 production. However, achieving this remains challenging due to the stringent geometric and electronic requirements for O 2 adsorption sites. Herein, a metal‐free vdW heterojunction is presented by electrostatically coupling p‐type polypyrrole‐derived carbon (PPy‐800) with n‐type g‐C 3 N 4 nanosheets (CN m ). The resulting heterojunction enables spatially resolved nitrogen‐based active sites, with edge N atoms from CN m and azido species from PPy‐800, cooperatively anchoring O 2 molecules in a dual‐site configuration. Density functional theory (DFT) calculations reveal that this arrangement significantly reduces the adsorption energy of O 2 and promotes directional charge separation and transfer through an internal electric field at the p‐n junction interface. The optimized heterojunction, designated CN p1m10 (with a mass ratio of PPy‐800: CN m = 1: 10), achieves a H 2 O 2 production rate of 10415.27 µmol g −1 h −1 under visible light in the presence of 10% isopropanol. Remarkably, even in pure water, CN p1m10 achieves a solar‐to‐chemical conversion (SCC) efficiency of 1.31%, alongside potential antibacterial activity. This work highlights the importance of rational interfacial design for dual‐site O 2 adsorption in advancing metal‐free photocatalysts for sustainable H 2 O 2 production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
9秒前
11秒前
康康发布了新的文献求助10
18秒前
李丽关注了科研通微信公众号
19秒前
积极从蕾应助ceeray23采纳,获得20
19秒前
完美世界应助ceeray23采纳,获得20
22秒前
李爱国应助康康采纳,获得10
23秒前
FashionBoy应助ceeray23采纳,获得20
25秒前
李健应助ceeray23采纳,获得20
28秒前
关关过应助ceeray23采纳,获得20
31秒前
关关过应助ceeray23采纳,获得20
33秒前
这学真难读下去完成签到,获得积分10
36秒前
36秒前
李丽发布了新的文献求助10
43秒前
49秒前
mickaqi完成签到 ,获得积分10
52秒前
55秒前
Ahan发布了新的文献求助10
56秒前
秋雨梧桐叶落时完成签到,获得积分10
1分钟前
1分钟前
在水一方应助ceeray23采纳,获得20
1分钟前
巫马尔槐完成签到,获得积分10
1分钟前
Jayzie完成签到 ,获得积分10
1分钟前
1分钟前
iShine完成签到 ,获得积分10
1分钟前
闪闪的白梅完成签到,获得积分10
1分钟前
李爱国应助ceeray23采纳,获得20
1分钟前
1分钟前
咸鱼完成签到 ,获得积分10
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
2分钟前
wanci应助ceeray23采纳,获得20
2分钟前
2分钟前
飘逸橘子完成签到,获得积分10
2分钟前
2分钟前
2分钟前
英姑应助ceeray23采纳,获得20
2分钟前
3分钟前
Criminology34给wmq的求助进行了留言
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606566
求助须知:如何正确求助?哪些是违规求助? 4691052
关于积分的说明 14866803
捐赠科研通 4707818
什么是DOI,文献DOI怎么找? 2542899
邀请新用户注册赠送积分活动 1508211
关于科研通互助平台的介绍 1472276